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Introduction to RPL Protocol

• RPL: Routing Protocol for Low-Power and Lossy Networks. 

• Purpose: Designed for IPv6-based routing in Low-Power and Lossy Networks (LLNs)

• Key concept: Constructs a Directed Acyclic Graph (DAG) rooted at the sink

• Goal: Minimize the cost of reaching the sink from any node based on the Objective 

Function (OF)

• Key Terminology:

• DAG (Directed Acyclic Graph): A directed graph without cycles

• DAG root: Node with o outgoing edges

• DODAG ID: Unique IPv6 ID assigned to the root

• Rank: Defines node positions relative to the DODAG root

• RPL implementation in NetSim is based on RFC 6550.

RFC Reference: https://www.rfc-editor.org/rfc/rfc6550
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Control messages in RPL

https://www.rfc-editor.org/rfc/rfc6550


Objective function and Link quality

• Objective Function (OF): Determines route prioritization

• NetSim implementation: OF prioritizes routes with the best link quality

• Link quality depends on:

• Received power

• Receiver sensitivity of nodes

• Link Quality Calculation in NetSim

• Calculate in both direction 1 −
𝑝

𝑟𝑠

• 𝑝 is the received power (dBm)

• 𝑟𝑠 is the receiver sensitivity (dBm)

• Denote as Transmit link quality, 𝑇𝐿𝑞 and receive link quality 𝑅𝐿𝑞.

• Final link quality: 𝐿𝑞 =
𝑇𝐿𝑞+𝑅𝐿𝑞
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Rank calculation in NetSim

• Rank: Scalar representation of node location within DODAG

• Purpose:

• Measure distance from root

• Avoid and detect loops

• Root node always has Rank 1 (also the border router in IoT)

• The rank calculation is based on the objective function defined.  

• Rank Increase Formula:

𝑅𝐼 = 𝑀𝑎𝑥𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 − 𝑀𝑖𝑛𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 × 1 − 𝐿𝑞 2 + 𝑀𝑖𝑛𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

𝑅𝑎𝑛𝑘 = 𝑅𝐼 + 𝑅𝑎𝑛𝑘(𝑃𝑎𝑟𝑒𝑛𝑡)

Where:

• 𝑅𝐼 is the Rank Increase

• MaxIncrement = 16 

• MinIncrement = 1 as per RFC 6550

• 𝐿𝑞 is the Link quality
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DODAG with Node Ranks in an IoT Network



Example calculation for better understanding

• Rank of the root node: 1,

• Parent node of S2 is the root node.

• The received power at S2 can be calculated using the following formula,

𝑃𝑟 𝑑𝐵𝑚 = 𝑃𝑡  + 𝐺𝑡 + 𝐺𝑟 + 20 log10

𝜆

4𝜋𝑑0
+ 10 × 𝜂 × log10

𝑑0

𝑑
 

𝑃𝑟 𝑑𝐵𝑚 = 1 + 0 + 0 + 20 log10

0.125

4 ×  3.14 ×  8
+ 10 ×  3 ×  log10
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49.08

𝑃𝑟 𝑑𝐵𝑚 = −80.74

where, 𝑃𝑡 = 1𝑚𝑊 , 𝑑 is the distance between s2 and root node, and is 

equal to 37.32𝑚 , 𝑑0 = 8, 𝐺𝑡 = 0, 𝐺𝑟 = 0,  𝜂 = 3 , 𝜆 =
𝑐

𝑓
= 0.125𝑚, 𝑓 =

2400𝑀𝐻𝑧 

• One way link quality 𝐿𝑞 = 1 −
𝑃𝑡

𝑟𝑠
= 1 −

−80.74

−85
= 1 − 0. 949 = 0.051
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The network topology in IoT using RPL Protocol, 

Pathloss Model: Log Distance, Pathloss Exponent = 3

Transmit power = 1mW, Receiver Sensitivity = -85 dBm 



Rank calculations in NetSim

𝐿𝑞 =
𝑇𝐿𝑞 + 𝑅𝐿𝑞

2
=

0.051 + 0.051

2
= 0.051

𝑅𝑎𝑛𝑘𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝐹𝑙𝑜𝑜𝑟( 𝑀𝑎𝑥𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 − 𝑀𝑖𝑛𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 × 1 − 𝐿𝑞 2 + 𝑀𝑖𝑛𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡)

where, Lq = 0.051, MaxIncrement = 16, and MinIncrement = 1   

𝑅𝑎𝑛𝑘𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝐹𝑙𝑜𝑜𝑟( 16 − 1 × 1 − 0.051 2 +1) = (15 × 0.900 + 1) =  𝑓𝑙𝑜𝑜𝑟(14.50) =  14

𝑅𝑎𝑛𝑘 = 𝑅𝑎𝑛𝑘𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 + 𝑅𝑎𝑛𝑘 (𝑃𝑎𝑟𝑒𝑛𝑡)

𝑅𝑎𝑛𝑘 = 14 + 1 = 15

• The rank of S2 is 15. We next calculate the rank for S1 

• The received power at S1 can be calculated using the following formula,

𝑃𝑟 𝑑𝐵𝑚 = 1 + 0 + 0 + 20 log10

0.125

4 × 3.14 × 8
+ 10 × 3 × log10
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27.85
= −73.35

        where 𝑑 is the distance between s2  and root node, 𝑑0 = 8, 𝐺𝑡, 𝐺𝑟 = 0, 𝜂 = 3, 𝜆 =
𝑐

𝑓
= 0.125𝑚, 𝑓 = 2400𝑀𝐻𝑧 

𝐿𝑖𝑛𝑘 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 1 −
−73.35

−85
= 1 − 0.862 = 0.137

6



Rank calculations in NetSim

𝐿𝑞 =
𝑇𝐿𝑞 + 𝑅𝐿𝑞

2
 =

0.137 + 0.137

2
= 0.137

𝑅𝑎𝑛𝑘𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝐹𝑙𝑜𝑜𝑟( 16 − 1 × 1 − 0.137 2 +1) = (15 × 0.744 + 1)

= 𝑓𝑙𝑜𝑜𝑟(12.16) = 12

• In this case, the parent of S2 is S1, and the rank of S2 is 15

𝑅𝑎𝑛𝑘 = 𝑅𝑎𝑛𝑘𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 + 𝑅𝑎𝑛𝑘 (𝑃𝑎𝑟𝑒𝑛𝑡) = 12 + 15 = 27

• The Rank of S1 is 27.

• Similarly, the rank for other nodes will be calculated. The rank of a node 

in NetSim can be observed through the DODAG Visualizer.

• We see that the Ranks of S4, S3, S5 are 15, 28, 27 respectively
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DODAG visualizer showing information about 

rank and parent relationships



Rank attack in RPL using NetSim

• Normal RPL process:

• Transmitter broadcasts DIO during DODAG formation

• Receiver updates parent list, sibling list, and rank

• Receiver sends DAO message with route information

• Malicious node behavior:

• Receives DIO but doesn't update its rank

• Advertises a fake (lower) rank

• Other nodes update their rank based on this fake information

• Attack impact:

• Nodes choose malicious node as preferred parent due to lower rank

• Malicious node drops packets instead of forwarding

• Result: Zero network throughput
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Rehman et al., “Rank Attack using Objective Function in RPL for Low Power and Lossy Networks,” 2016, IEEE International Conference on 

Industrial Informatics and Computer Systems (CIICS).

All nodes in the network choose their parent 

based on link quality

Nodes 3, 4, and 5 choose parent as node 1 due 

to its lower rank



Rank attack in RPL using NetSim

• Consider the scenario shown. The root node(LOWPAN Gateway) has rank 1. It 

sends DIO messages to Sensor 5 and Sensor 7, which are within its range.

• Both Sensor 5 and Sensor 7 recognize the DODAG ID of the root node. They 

identify the root node as their parent.

• After this, Sensor 5 and Sensor 7 transmit DAO messages to the root node. 

These DAO messages help to propagate destination information upward along 

the DODAG. Sensor 5 then updates its rank and broadcasts DIO messages.

• However, Sensor 7 is a malicious node. It also updates its rank but advertises a 

fake, lower rank after receiving the DIO message from the root node.

• Sensors 6 and 4 receive DIO messages from both Sensor 5 and Sensor 7. Due 

to Sensor 7's falsely advertised lower rank, Sensors 6 and 4 choose Sensor 7 as 

their preferred parent.

• After selecting Sensor 7 as their parent, Sensors 6 and 4 send DAO messages 

and data packets to Sensor 7.But instead of forwarding the data packets, Sensor 

7 drops them. 

The network topology in IoT using RPL Protocol, 

Pathloss Model: Log Distance, Pathloss Exponent: 2
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Rank attack in RPL using NetSim

• The results can be observed in the Results window, showing 

that the network has zero throughput.

• Users can also observe Packet trace that after Sensor 7 

receives packets, it does not forward them, resulting in no 

data packet transmission from Sensor 7.

• Additionally, users can generate the DODAG visualizer using 

Python and MATLAB utilities. In the DODAG, it can be 

observed that Sensor 6 and Sensor 4 have chosen Sensor 7 

as their parent. The packet trace shows that packets from Sensor-4 and 

Sensor-6 are received by Sensor-7, but Sensor-7 is not 

transmitting packets.

The DODAG visualizer shows that Sensor-6 and Sensor-4 are 

choosing Sensor-7 as a parent node.

Throughput for the two applications is zero because the malicious sensor is 

collecting all the packets
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Training
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Attack scenarios - Training data generation

• Created 8 scenarios with varying node counts (6 to 39)

• Malicious node count: 2, 4, 5, 6, 8, 10, 12, and 14

• Simulations run with 3 random seeds for each scenario

• Enabled packet trace for all scenarios 

• Used a python script to calculate the number of DAO, DIO, and data 

packets received by each sensor from packet trace.

• Feature Extraction

1. DAO Sent

2. DAO Received

3. DIO Sent 

4. DIO Received 

5. Data Packets Received
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The network topology in IoT using RPL Protocol with 2 

malicious nodes



Data processing and Feature Visualization

• Data extraction from packet trace to Excel using Python 

script

• Total dataset: 534 sensors, 5 features each

• Feature normalization process:

• Calculate max value for each feature across all 

sensors

• Divide each sensor's value by the max to get 0-1 

range

• Manual labeling: 1 for non-malicious, 0 for malicious
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We label the sensors based on the features



Feature visualization: 2 malicious nodes; 3 runs, each with a 
different random seed
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Feature visualization: 4 malicious nodes; 3 runs, each with a 
different random seed
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Feature visualization: 5 malicious nodes; 3 runs, each with a 
different random seed
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Feature visualization: 6 malicious nodes; 3 runs, each with a 
different random seed
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Feature visualization: 8 malicious nodes; 3 runs, each with a 
different random seed
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Feature visualization: 10 malicious nodes; 3 runs, each with a 
different random seed
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Feature visualization: 12 malicious nodes; 3 runs, each with a 
different random seed
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Feature visualization: 14 malicious nodes; 3 runs, each with a 
different random seed
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Classifier Training

Features data was used to train the following classifiers:

• K-Nearest Neighbor

• Naive Bayes

• Support Vector Machine

• Logistic Regression
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Inference 
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Inference and Test Scenarios

• Created 6 new scenarios with different node counts (9 to 42)

• Malicious node count: 3, 7, 9, 11, 13, and 15

• Simulations run with 3 random seeds for each scenario
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The network topology in IoT using RPL Protocol includes 3 malicious nodes



Feature visualization: 3 malicious nodes; 3 runs, each with a 
different random seed
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Feature visualization: 7 malicious nodes; 3 runs, each with a 
different random seed
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Feature visualization: 9 malicious nodes; 3 runs, each with a 
different random seed
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Feature visualization: 11 malicious nodes; 3 runs, each with a 
different random seed
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Feature visualization: 13 malicious nodes; 3 runs, each with a 
different random seed
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Feature visualization: 15 malicious nodes; 3 runs, each with a 
different random seed
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Confusion matrix

• Confusion matrix summarizes the performance of a machine learning model on a set of test data. 

• Displays the number of accurate and inaccurate instances based on the model’s predictions.

• Used to measure the performance of classification models

• Confusion matrix components:

• True Positive (TP): Predicted as positive, and it actually is positive.

• True Negative (TN): Predicted as negative, and it actually is negative.

• False Positive (FP): Predicted as positive, but it is actually negative.

• False Negative (FN): Predicted as negative, but it is actually positive

• Performance metrics:

• Accuracy: The overall correct predictions (TP + TN) divided by the total number of instances.

• Precision: The number of true positives divided by the total number of predicted positives (TP + FP).

• Recall: The number of true positives divided by the total number of actual positives (TP + FN).

• F1 Score: The harmonic mean of precision and recall, providing a balance between the two.
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Confusion Matrix: Accuracy, Precision, F1 Score, Recall 
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Metric Value

Accuracy 0.8896

Precision 0.8556

Recall 1.0000

F1 Score 0.9222

Metric Value

Accuracy 0.9538

Precision 0.9341

Recall 1.0000

F1 Score 0.9659



Confusion Matrix: Accuracy, Precision, F1 Score, Recall 
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Metric Value

Accuracy 0.9237

Precision 0.8956

Recall 1.0000

F1 Score 0.9449

Metric Value

Accuracy 0.9980

Precision 1.0000

Recall 0.9969

F1 Score 0.9985



Comparison and Future Work
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Classifier True 
Positives

True
Negatives

False
Positives

False
Negatives Accuracy Precision Recall F1 Score

Naïve Bayes 324 174 0 0 1.0000 1.0000 1.0000 1.0000

KNN 324 165 9 0 0.9819 0.9730 1.000 0.9863

Logistic Regression 324 155 19 0 0.9618 0.9446 1.000 09715

SVM 324 172 2 0 0.9960 0.9939 1.000 0.9969

Choukri et al., “RPL rank attack detection using Deep Learning,” 2020 International Conference on Innovation and Intelligence for 

Informatics.

Key Observations

• High Precision (>94%): Low false positive rate; malicious classifications are likely correct.

• Near-Perfect Recall (≥99.69%): Classifiers rarely miss malicious nodes.

• Robust F1 Scores (>0.97): Well-balanced performance in identifying threats and avoiding false alarms.

Future Work

• Testing with larger networks

• Exploring other types of IoT network attacks



Appendix: How-to-Guide
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How to classify the data?

To generate an excel file containing the 5 feature message counts for each sensor, follow these steps:

• Modify the file paths in the Python script according to your setup.

• Open the command prompt.

• Navigate to the folder containing the Python script.

• Run the FeatureCount.py script to process the packet trace file and generate the Excel file.

• You can place the Python script anywhere, as long as the file paths are correctly set to locate the necessary data files, including 

the test and training data scenarios that contain the packet trace files.

• After running the script, it will generate the Sensor_Message_Count.csv file in each folder containing a packet trace.
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How to Normalize the data?

To generate an excel file containing the normalization of 5 feature message counts for each sensor, follow these steps:

• Modify the file paths in the Python script according to your setup.

• Open the command prompt.

• Navigate to the folder containing the Python script.

• Run the Normalize.py script to process the Sensor_Message_Counts file and generate the normalized Excel file.

• You can place the Python script anywhere, as long as the file paths are correctly set to locate the necessary data files, including 

the test and training data scenarios that contain the Sensor_Message_Counts.csv.

• After running the script, it will generate the merged and normalized data file in the folder containing the Python script.
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How to generate plots?

• Download the workspace and place it in your desired location.

• The Python scripts can be placed anywhere, as long as the file paths are correctly set.

• Modify the file paths in the Python scripts according to your setup.

• Open the command prompt.

• Navigate to the folder containing the plot-related Python scripts.

• Run the DAO, DIO, and Packet Received scripts present in the plots folder to process the packet trace files and generate the plots.

• Ensure the necessary packet trace files are accessible based on the paths defined in the scripts.
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How to run the classifiers?

• Along with normalizing the data, the process will generate `test_data` and `training_data` files.

• Run the `Data Classifier.py` script using the trained data by providing the file paths for both the `Trained-Data` and `Test-Data`.

• Modify the file paths in the `Data Classifier.py` script according to your setup.

• Open the command prompt and run the script as shown below:
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The Python script generates six sets of predicted labels and uses this data to create confusion matrices.



How to get the confusion matrix?

• After obtaining the predicted labels from the classifiers, use the predicted label Excel files along with the real training data.

• Place the predicted label Excel files and the `confusion.py` script in the same folder.

• Modify the file paths in the `confusion.py` script according to your setup.

• Open the command prompt and navigate to the folder containing the `confusion.py` script.

• Run the script as shown below:

• The script will generate a confusion matrix for each classifier based on the data provided.
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