© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2025

False Data Injection Attack

Two cases: Simulation and Emulation
Two Types: Payload modification and Header modification

Software: NetSim Standard v14.3 (64 bit), Visual Studio 2022

Project code download link:
https://github.com/NetSim-TETCOS/False-Data-Injection-Attack-

Internetwork/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in
NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-
up-netsim-file-exchange-projects

1 Introduction

FDI (False Data Injection) attack is a type of cyber-attack where an attacker injects false data
into a system or network with the intent of causing damage or disruption. FDI attacks can be
launched against various types of systems, including industrial control systems, critical
infrastructure, financial systems, and information systems.

In an FDI attack, the attacker may modify or manipulate data in transit or at rest to achieve
their objectives. For example, an attacker may alter the data in a financial transaction to
redirect funds to a different account, modify the configuration of an industrial control system to
cause physical damage, or manipulate data in a way that causes a system to crash or

malfunction.

Toy Example: FDI Attack on PING
In this example, we launch an FDI attack on ICMP ping messages between a source and

destination. The destination receives the message and processes it as if it were legitimate.

2 Case 1: FDI implementation within NetSim simulator. Packet

payload modification.

This case is a simpler method of simulating the FDI attack requiring only one machine. Case

2 (described later) involves using 3 machines.

Ver 14.3 Page 1 of 15

http://www.tetcos.com/
https://github.com/NetSim-TETCOS/False-Data-Injection-Attack-Internetwork/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/False-Data-Injection-Attack-Internetwork/archive/refs/heads/main.zip
https://support.tetcos.com/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

Original ping traffic captured using

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2025

Virtual network within NetSim

Wireshark given as input to
NetSim

et -
WIRFSHARK T g
\ ‘7 192.168.0.46 PR - =
- — h B e e ‘
N ter 4 N
: 2 \ 3] Wid Nooe .
Y E \ - i 2
i ' 7 ou(putpcapfile(l § = =it - T = = == =
= N N = =
e Y 4v 4 ~ . Modifed payload
gi3it EAHE [] N 1921680412 ~ sreros
ol Payios L g B
Sl .
Sinput pcap file
False Data Injected into the ICMP
packet payload after FDI Attack

Figure 1: PING application between a real source and real destination is captured as a pcap file and
given as an input to a virtual source inside NetSim. In this example, the source IP is set to
192.168.0.12 and the destination IP is set to 192.168.0.46. The external pcap file is available in the

project download link.

3 Generating Packet capture for NetSim
We explain the steps used to capture PING data as a pcap file. This has been provided for

those readers who may wish to capture their own pcap files and use implement the FDI attack

on that.

1.
2.

Ver 14.3

Open Wireshark in the system where NetSim is installed.
Once the Wireshark is opened, please select the proper interface.(For Ex: Ethernet) as

show below. Double click on the interface to open live packet capture window.

|
An @ X A = e
+
Welcome to Wireshark
Open
C:\Users\Joseph\Desktop\Raw.pcap (291 KB)
C:\Users\Joseph\Desktop\INPUT_TO_NETSIM.pcap (270 KB)
C:\Users\Joseph\AppData\Local\ Temp\NetSim\std_13.3\DISPATCHED_TO_EMULATOR.pcap (7252 Bytes)
C:\Users\Joseph\Desktop\ Wireshark\INPUT_TO_NETSIM. pcap (not found)
Capture
using ths fiter: |1 | ~] Alinterfaces shown ¥
VMware Network Adapter VMnet8 A
Ethernet L]
Viware Network Adapter VMnet! X
Adapter for loopback traffic capture A
Local Area Connection* 8
Local Area Connection* 7
Local Area Connection”
Learn
User'sGuide - Wiki * Questions and Answers - Mailing Lists - SharkFest - Wireshark Discord
You are running Wireshark 4.0.2 (v4.0.2-0-G41545613370). You receive automatic updates.
Ready to load or capture No Packets Profie: Defaut

Figure 2: Select packet capture interface to capture packets at source.

In this Example we have considered a real source with 192.168.0.12 and a real

destination with IP 192.168.0.46. Open command line at source device and enter the

command
» ping 192.168.0.46 -t

Page 2 of 15

http://www.tetcos.com/

Ver 14.3

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2025

BN Command Prompt - ping 192.162.0.46 -t
i rsion 18.

Figure 3 : Ping traffic between source IP 192.168.0.12 and destination IP 192.168.0.46

The pcap file will contain all incoming and outgoing packets from the system in which
the capture is being done. Once you have captured the desired ping traffic stop the
Wireshark packet capture using stop option and save the packet capture in a desired
location with desired name (*.pcap) for E.g., Raw.pcap with Save as type as

Wireshark/tcpdump.... -pcap.

A

Savein: Desktop V‘ (€] 2 £° @~

}:} No items match your search.

Quick access

Desktop

Libraries

La

This PC

L

Network

File name Raw pcap v Save

Save as type: Wireshark Acpdump/... - nanosecond pcap ("d v Cancel

Help

This PCAP file needs to be edited before giving as input to NetSim. The editcap
application in Wireshark Installation Directory can be used to edit the any pcap file to
be provided as a input to NetSim
Go to Wireshark installation directory [C:\Program Files\Wireshark]
Open command prompt, and execute the following command:
> editcap -C 14 -L -T rawip -F pcap "<File Location where the file is
present>\Raw.pcap" "<File Location where the file needs to be
saved>\INPUT_TO_NETSIM.pcap"

Page 3 of 15

http://www.tetcos.com/

Command parameters

© TETCOS LLP. All rights reserved.

www.tetcos.com
March 2025

-C14

Truncates each packet to 14 bytes (Ethernet
header length).

NetSim typically only needs
L2/L3 headers for emulation,
not full payloads.

-L

Adjusts the captured packet length in the
PCAP header to match the truncated size.

Ensures correct packet size
metadata in the output file.

-T rawip

Converts packet type to raw IP format.

Ensures NetSim correctly
interprets the packets as IP-
based traffic.

-F pcap

Sets output format to standard PCAP (not
PCAP-NG).

NetSim expects traditional
PCAP format for compatibility.

Steps to simulate by providing pcap packet capture file as input to NetSim

1. Go to start search Run - Enter the command “SystemPropertiesAdvanced” and then

click on OK.

2. Click the Environment Variables - Add the following Environment PATH variable.
<File-Path-INPUT_TO_NETSIM.pcap file is located>\INPUT_TO_NETSIM.pcap
For eg: C:\Users\Joseph\Desktop\INPUT_TO_NETSIM.pcap

User variables for Joseph

Variable Value
C:\Users\Joseph\OneDrive
C:\Users\Joseph\OneDrive

OneDrive
OneDriveConsumer

Path C:\Users\Joseph\AppData\Local\Microsoft\WindowsApps;D:\...
PyCharm Community Editi.. D:\Softwares\PyCharm Community Edition 2022.1.1\bin;

RLM_DIAGNOSTICS

C:\Users\Joseph\AppData\Local\Temp\NetSim\riminfo

Figure 4 : Environment Variable Path
For more information how to provide pcap file as input refer our knowledge base article

TEMP C:\Users\Joseph\AppData\Local\Temp
T™P C:\Users\Joseph\AppData\Local\Temp
®

Variable name: EMULATOR_INPUT
Variable value: C:\Users\Joseph\Desktop\INPUT_TO_NETSIM.pcap

Browse Directory... Browse File... @ Cancel

e A o g ey g e e

PATHEXT .COM;.EXE; BAT;.CMD;.VBS;.VBE; JS; JSE; WSF,WSH,.MSC;.PY;PYW ‘

OK Cancel

https://support.tetcos.com/support/solutions/articles/14000103748-how-can-i-provide-pcap-

file-as-input-to-simulation-

4 Implementing the FDI attack
Run the NetSim in Administrator Mode (Right Click on NetSim Icon - Run as

1.

Ver 14.3

Administrator)

The FDI_Attack_in_Internetworks_v14.2 comes with a sample network configuration

that are already saved. To open this example, go to Your work in the home screen of

NetSim and click on the FDI_Sample_Internetwork from the list of experiments.

Page 4 of 15

http://www.tetcos.com/
https://support.tetcos.com/support/solutions/articles/14000103748-how-can-i-provide-pcap-file-as-input-to-simulation-
https://support.tetcos.com/support/solutions/articles/14000103748-how-can-i-provide-pcap-file-as-input-to-simulation-

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2025

3. The saved network scenario consists of
o 2 Wired Node
o 1 L2 Switch

o 1 Router

———Kep1EMULATION

Figure 5: NetSim Emulation Scenario, Wired_Node_1 device mapped for Source IP 192.168.0.12 and
Wired_Node_2 device mapped for Destination IP 192.168.0.46
4. Application Properties

o Application Type - EMULATION
o Source IP -192.168.0.12
o Destination IP — 192.168.0.46

5. Run the Simulation for 100 sec.

Note: The source IP address refers to the IP address of the system from which you are
initiating the ping command.

The destination IP address to the IP address of the device or system that you are pinging.

5 Observations

After the simulation is completed, you can observe the results using Wireshark captured files.
In the Result Dashboard, On the left side, Packet Capture - Emulation and you can see all

Emulated Packets captured.

Packet Capture

peap files which can be opened using Wireshark.

Simulation Performance Emulation Performance
Mo Data Available. ALL_ NETWORK_PACKETS... DISPATCHED_TC_EMULA..
NOT_DISPATCHED _TO_E... REINJECTED_FROM_EMU...

Opens in Wireshark

Figure 6: Emulation Packet Capture in Result Dashboard

We can observe original packets in the DISPATCHED_TO_EMUALTOR:.pcap file.

Ver 14.3 Page 5 of 15

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2025

M “\pipe\NETSIM_DISPAT
ERE Q «w FiEaaaqr
Time Source Destination Protocol Length Info
77 80.159657 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, s5eq=12006/58926, tt1-128 (no response found!)
78 81.175651 192.168.0.12 192.168.0.46 1P 60 Echo (ping) request 1d-0x0001, seq=12007/59182, tt1=128 (no response found!)
79 82.202649 192.168.6.12 192.168.0.46 TP 60 Echo (ping) request 1d-0x0001, seq=12008/59438, tt1=128 (no response found!)
80 83.217555 192.168.0.12 192.168.0.46 1P 60 Echo (ping) request 1d=0x0001, seq~12009/59694, tt1=128 (no response found!)
8184.204881 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, seq=12010/59950, tt1-128 (no response found!)
8285243692 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, seq=12011/60206, tt1=128 (no response found!)
8386.268285 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d=0x0001, seq=12012/60462, tt1=128 (no response found!)
8487293419 192.168.6.12 192.168.0.46 1M 60 Echo (ping) request id-0x0001, seq=12013/60718, tt1-128 (no response found!)
8588.308933 192.168.0.12 192.168.0.46 1P 60 Echo (ping) request 1d=0x0001, seq=12014/6@974, tt1=128 (no response found!)
86 89.338343 192.168.0.12 192.168.0.46 P 60 Echo (ping) request id-0x0001, seq~12015/61230, tt1-128 (no response found!)
| 8790.354084 192.168.0.12 192.168.0.46 1P 60 Echo (ping) request 1d=0x0001, seq=12016/61486, tt1=128 (no response found!)
8891.367138 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d-0x0001, seq-12017/61742, tt1-128 (no response found!)
8992.380788 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d=0x0001, seq=12018/61998, tt1=128 (no response found!)
90 93.407840 192.168.6.12 192.168.0.46 bl 60 Echo (ping) request 1d-0x0001, seq=12019/62254, tt1-128 (no response found!)
9194.427147 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d=0x0001, seq=12020/62510, tt1=128 (no response found!)
92 95.455266 192.168.0.12 192.168.0.46 1P 60 Echo (ping) request id-0x0001, seq=12021/62766, tt1=128 (no response found!)
93 96.469812 192.168.0.12 192.168.0.46 (T 60 Echo (ping) request 1d-0x0001, seq=12022/63022, tt1-128 (no response found!)
94 97.485706 192.168.0.12 192.168.0.46 P 60 Echo (ping) request 1d=0x0001, seq=12023/63278, tt1=128 (no response found!)
95 98.498798 192.168.0.12 192.168.0.46 ICHP 60 Echo (ping) request id-0x0001, 5eq=12024/63534, tt1=128 (no response found!)
96 99.513840 192.168.0.12 192.168.0.46 TP 60 Echo (ping) request 1d-0x0001, seq=12025/63799, tt1=128 (no response found!)
> Frame 87: 60 bytes on wire (480 bits 45 00 00 3c ea 94 00 00 80 01 ce al 0 a8 00 Bc E <
Raw packet data €010 cO a8 00 2e 08 00 le 6b 00 01 2e 70 61 62 63 64 .k -.-abcd
> Internet Protocol Version 4, Src: 19| 9920 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 | efghijkl mnoparst
© Internet Control Message Protocol || 930 75 76 77 61 62 63 64 65 66 67 68 69 uvwabede Fghi
Type: 8 (Echo (ping) request) Original payload
Code: ©
Checksum: @xleb [correct]
[Checksum Status: Good]
Identifier (BE): 1 (0x0001)
Identifier (LE): 256 (0x0100)
Sequence Number (BE): 12016 (@x2¢
Sequence Number (LE): 61486 (@xfé
> [No response seen]
v Data (32 bytes)
Data: 6162636465666768696a6b6¢
[Length: 32]

Figure 7: Original payload captured by NetSim emulator

We can observe false data injected packets in the REINJECTED_FROM_EMUALTOR:.pcap

file.

Note:

You should select the any ICMP Packet to observe the changes.

KRAAQT
[WT7oply & displey filter .. < =3 -]+
o. Time Desunaton frotocol Length Info
29.827944 192.168.0.46 e 60 Echo (ping) request id=6x0601, seq=11937/41262, (no response found!)
3 10.841356 192.168.0.46 1cHP 60 Echo (ping) seq=11938/41518, (no response found!)
411.856379 192.168.0.46 1cmp 60 Echo (ping) seq=11939/41774, (no response found!)
512.882172 192.168.0.46 1CHP 60 Echo (ping) 50q=11940/42030, t£1=128 (no response found!)
613.897323 192.168.0.46 1P 60 Echo (ping) request 5eq=11941/42286, t£1=128 (no response found!)
714.915305 192.168.0.46 ICHP 60 Echo (ping) request 5eq=11942/42542, response found!)
8 15.946693 192.168.0.46 ICHP 60 Echo (ping) request 5eq=11943/42798, response found!)
9 16.960516 192.168.0.46 P 60 Echo (ping) request 5eq=11944/43054, response found!)
10 17.978660 192.168.0.46 ICHP 60 Echo (ping) request seq=11945/43310, response found!)
11 18.990790 192.168.0.46 P 60 Echo (ping) request 5q-11946/43566, tt1-128 (no response found!)
12 20.008881 192.168.0.46 ICHP 60 Echo (ping) request 5eq-11947/43822, tt1-128 (no response found!)
13 21.027967 192.168.0.46 cHP 60 Echo (ping) request 5eq-11948/44078, tt1-128 (no response found!)
14 22.059262 192.168.0.46 cHP 60 Echo (ping) request 5eq=11949/44334, tt1=128 (no response found!)
1523.071322 192.168.0.12 192.168.0.46 ICHP 60 Echo (ping) request 5eq=11950/44590, response found!)
16 24.104973 192.168.0.12 192.168.0.46 CHP 60 Echo (ping) request 5eq=11951/44846, response found!)
| 1725.109052 192.168.0.12 192.168.0.46 ICHP 60 Echo (ping) request id=0x0001, seq=11952/45102, response found!)
1826.139136 192.168.0.12 192.168.9.46 TCHP 60 Echo (ping) request id=6x0001, seq=11953/45358, response found!)
1927.157122 192.168.0.12 192.168.9.46 TCHP 60 Echo (ping) request id=8x0001, seq=11954/45614, response found!)
2028.186964 192.168.0.12 192.168.0.46 cHp 60 Echo (ping) request id=0x0001, seq=11955/45876, tt1=128 (no response found!)
21 30.212292 192.168.0.12 192.168.0.46 IcMp 60 Echo (ping) request id=0x0001, seq=11957/46382, tt1=128 (no response found!)
> Frame 17: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface \\.\pipe\NETSIM REINJECTED, id @ |) 45 00 00 3c ea 52 00 00 80 O1 ce e3 O a8 00 OC
Raw packet data 9910 O a8 60 2e 08 60 bS 3a 00 01 2e bo 41 41 41 41
> Internet Protocol Version 4, Src: 192.168.0.12, Dst: 192.168.0.46 0020 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
v e e e e Ttk || mamrararmarma1 sa1ma
Type: 8 (Echo (ping) request) Modified payload after FDI attack
@xb53a [correct] | Recalculated checksum Inserted in ICMP
Checksum Status: Good Packet Checksum Field
r (BE): 1 (0x0001)
Identifier (LE): 256 (0x0100)
Sequence Number (BE): 11952 (@x2eb)
Sequence Number (LE): 45102 (8xbo2e)
> [No response seen]
v Data (32 bytes)
Data: 41
[Length: 32]
7 Ready to load or capture. || Packets: 86 - Displayed: 86 (100.0%) Profile: Default

Figure 8: Traffic with false data injected. Observe the difference in payload and checksum is
recalculated and inserted in ICMP packet checksum field.

Case 2: FDI implementation in NetSim emulator. Packet header modification.

Note:

variables.
[]

Ver 14.3

Page 6 of 15

Before proceeding with Case 2, remove the EMULATOR _INPUT variable from the environment

The code changes required for header modification are provided at the end of the document

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.

www.tetcos.com

March 2025

We have 3 systems — Source, Destination, and Emulator. The PING packets from source to
destination pass through the emulator.

FDI attack on real traffic using NetSim Emulator

False Data Injected into the
packet header of ICMP Traffic
during FDI Attack

NetSim Emulator

ICMP packets

generated from real Packets with modified
source node header
S T | RE—— =
Real Source IP Destination IP
192.168.0.12 192.168.0.68

Figure 9 : PING application between source and destination. The source IP is set to 192.168.0.12 and
the destination IP is set to 192.168.0.46. In NetSim We are implementing FDI Attack by modifying the
destination IP address to 192.168.0.68 in ICMP packet header.

6 Steps to Simulate

The set-up to run emulation would be to have a minimum of three (3) PC’s. One would be the
real source, the second would run NetSim emulation server, and the third would be the real
destination.
In this Example, we have considered 3 systems as shown below.
Real Source IP: 192.168.0.12
NetSim Emulation Server IP: 192.168.0.81
Real Destination IP: 192.168.0.46
Note: Ensure that the environmental variables do not contain an entry for EMULATOR_INPUT
in either the user or system variables.
7 Setting up the NetSim Emulation Server
1. Run the NetSim in Administrator Mode (Right Click on NetSim Icon - Run as
Administrator)
2. Open the Existing Sample FDI_Sample_Internetwork from the list of Experiments (In
NetSim Home Screen - Your Work)
3. The saved network scenario consists of
o 2 Wired Node
o 1L2 Switch

o 1 Router

Ver 14.3 Page 7 of 15

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2025

/ _—Xop1_emuLation

Figure 10: NetSim Emulation Scenario, Wired_Node_1 device mapped for Source IP 192.168.0.12
and Wired_Node_2 device mapped for Destination IP 192.168.0.46

4. Application Properties
o Application Type - EMULATION
o Source IP -192.168.0.12
o Destination IP — 192.168.0.46
5. Run the Simulation for 100 sec.
Note: The source IP address refers to the IP address of the system from which you are initiating
the ping command.

The destination IP address to the IP address of the device or system that you are pinging.

Setting up the Real Source and Destination

The client systems which are sources of real traffic can be connected to NetSim emulator by
resetting the gateway. Once the gateway for the client system is set as the NetSim Emulator

PC then traffic from the clients will go via NetSim Emulator PC.

Configuring NetSim Emulator as a Gateway in NetSim in Windows clients

1. Open command prompt in Administrator Mode
2. Type the command.
o route add <Network Destination> mask <Subnet Mask> <Gateway IP> metric
1
o route add 192.168.0.46 mask 255.255.255.0 192.168.0.81 metric 1
o After the Execution , you will get “OK”.

EX Administrator: Command Prompt — O b4

C:\WINDOWS\system32>route ADD 192.168.8.46 MASK 255.255,255.255

oK!

Figure 11: Adding the Static route from source to destination via gateway as NetSim emulation server-
192.168.0.81

3. To check whether IP Configuration affected or not type the command as show below

Ver 14.3 Page 8 of 15

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2025

o netstat -r

EX Administrator: Command Prompt —] >

troller

Fig 12 : Display of routing information at source node 192.168.0.12

4. You can observe that for the Destination node 192.168.0.46, the gateway address
assigned is 192.168.0.81 (IP Address of the system where NetSim Emulation server
is running)

5. Open command line at Source node 192.168.0.12 and enter the command.

> ping 192.168.0.46 -t

B Command Prompt - ping 192.168.046 -t

Fig 13 : Pinging to destination IP 192.168.0.46

8 Results and discussion
After the simulation is completed, you can observe the results using Wireshark captured files.
In the Result Dashboard, On the left side, Packet Capture - Emulation and you can see all

Emulated Packets captured.

Ver 14.3 Page 9 of 15

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2025

~ ~

Packet Capture

.peap files which can be opened using Wirsshark.

Simulation Performance Emulation Performance
No Data Available. ALL_MNETWORK_PACKETS... DISPATCHED_TO_EMULA..
NOT_DISPATCHED_TO E... REIMJECTED_FROM_EMU...

Opens in Wireshark
J

Fig 14: Emulation Packet Capture in Result Dashboard

Note: To change the packet header, modify the code according to Case 2 as mentioned below

in the appendix.
We can observe original ping traffic generated at the source 192.168.0.12

A “Ethemet - =] X
Fie Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Lol REQes=E=Fis S Qaaan
A [iomp8ip. src==152.168.0. 1288, dst==192. 168.0.%6] [X] +
No. Tme Source Destnaton Protocol Length Info ~

42 ©.181165 192.168.0.12 192.168.0.46 10 74 Echo (ping) request id=@x@001, seq=5238/30228, ttl=128 (reply in 44)

50 1.197803 192.168.0.12 192.168.0.46 0% 74 Echo (ping) request id=0x0081, seq=5239/30484, ttl=128 (reply in 52)

.+ 60 2.202874 192.168.9.12 192.168.0.46 0P 74 Echo (ping) request 1id=8x0001, seq=5246/30740, ttl=128 (reply in 62)
73 3.219358 192.168.9.12 192.168.0.46 109 74 Echo (ping) request 1d=0x0001, seqe5241/30996, ttl=128 (reply in 75)

91 4.234601 192.168.0.12 192.168.0.46 o 74 Echo (ping) request id=0x0001, seq=5242/31252, ttl=128 (reply in 93)

107 5.256313 192.168.0.12 192.168.0.46 0% 74 Echo (ping) request ide@x001, seqe5243/31508, ttl=128 (reply in 109)

116 6.262952 192.168.0.12 192.168.0.46 ICHP 74 Echo (ping) request 1d=@x001, seq=5244/31764, ttl=128 (reply in 118)
125 7.279873 192.168.0.12 192.168.0.46 ICHP. 74 Echo (ping) request id=0x0001, seq=5245/32020, ttl=128 (reply in 127) v
Frame 60: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface \Device\WPF_{ 18 < 4d be de 72 94 de 80 59 86 99 08 00 45 00 M. .r - Y- E

Ethernet II, Src: Giga-Byt _59:86:99 (94:de:80:59:86:99), Dst: Giga-Byt be:de:72 (18:c0:4d:be:¢ 90 3c 91 a9 00 00 80 01 00 00 <0 a8 00 Oc <0 a8 <
00 2¢ 08 00 38 €3 90 01 14 78 61 62 63 64 65 66 8 .. xabedef

¥ Internet Protocol Version 4, Src: 192.168.0.12, Dst: 192.168.0.46 - 3 a2
A A 67 68 69 6a 6b 6c 6d 6e 6f 76 71 72 73 74 75 76 ghijklan opgrstuv
77 61 62 63 64 65 66 67 68 69 wabcdefg hi
.. @101 = Header Length: 20 bytes (5)
Differentiated Services Field: @x0@ (DSCP: (S0, ECN: Not-ECT)
Total Length: 60
Identification: @x91a9 (37289)
000, = Flags: @xd
... 0000 0000 0000 = Frageent Offset: ©
Time to Live: 128
Protocol: ICHP (1)
Header Checksum: x0000 [validation disabled)
[Header checksum stat rified]

Original packet header

192.168.0.46
Internet Control Message Protoco

< >
@ 7 wireshark Ethemet028021.pcapng Packets: 1727 - Displayed: 238 (13.8%) Profie: Default

Figure 15: Original ICMP traffic generated from real source 192.168.0.12, captured using Wireshark.
We can observe false data injected packets in the false destination node 192.168.0.68

Note: You should select the any ICMP Packet to observe the changes.

Ver 14.3 Page 10 of 15

http://www.tetcos.com/

a
moe QewEF s _
A [icmp 88 ip.src==192.168.0.12
No. Time Source Destination
913 57.307933 192.168.0.12 192.168.0.68
928 62.085348 192.168.0.12 192.168.0.68
967 67.091952 192.168.0.12 192.168.0.68
1025 72.094388 192.168.0.12 192.168.0.68
1065 77.089713 192.168.0.12 192.168.0.68
1140 82.092135 192.168.0.12 192.168.0.68
1966 87.083133 192.168.0.12 192.168.0.68
2434 92.096064 192.168.0.12 192.168.0.68
2929 97.094593 192.168.0.12 192.168.0.68
3183 102.103787 192.168.0.12 192.168.0.68
3346 107.095221 192.168.0.12 192.168.0.68
3489 112.100850 192.168.0.12 192.168.0.68
3627 117.100473 192.168.0.12 192.168.0.68
3727 122.095225 192.168.0.12 192.168.0.68
4219 127.108133 192.168.0.12 192.168.0.68
4519 132.083288 192.168.0.12 192.168.0.68
4810 137.100359 192.168.0.12 192.168.0.68
5129 142.083010 192.168.0.12 192.168.0.68
5376 147.111344 192.168.0.12 192.168.0.68

0100 = Version: 4

Total Length: 60
Identification: @x8548
er. = Flags: 0x0
Time to Live: 127
Protocol: ICMP (1)

Source Address: 192.168.0.12

Destination Address: 192.168.9.68
Internet Control Message Protocol

.. 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: @x00 (DSCP: (S0, ECN: Not-ECT)

(34120)

...0 0000 0000 0000 = Fragment Offset: @

Header Checksum: @x3dee [validation disabled]

FDI attack

Qe qrm

© TETCOS LLP. All rights reserved.

Frotocol Length Info

o
e
o
o
P
e
bl
o
(<]
o
o
e
o
o
P
e
e
oe
P

Frame 3489: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface \
Ethernet II, Src: Giga-Byt_be:de:72 (18:c0:4d:be:de:72), Dst: Giga-Byt 72:91:47 (181
v Internet Protocol Version 4, Src: 192.168.0.12, Dst: 192.168.0.68 20

74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request

1d=0x0001,
1d=0x0001,
1d-0x0001,
1d-0x0001,
1d-0x0001,
1d=0x0001,
14-0x0001,
14=0x0001,
14-0x0001,
14-0x0001,
1d=0x0001,
1d=ex00e1,
1d=0x0001,
1d=-0xe0e1,
1d-0x0001,
1d-0x0001,
1d-0x0001,
1d-0x0001,
14-0x0001,

50q=2085/9489,

50q=2086/9736,

50q=2087/9992,

5eq=2088/10248,
seq=2089/10504,
5eq=2090/10760,
seq=2091/11016,
seq=2092/11272,
seq=2093/11528,
seq=2094/11784,
5eq=2095/12040,
50q=2096/12296,
5eq=2097/12552,
5eq=2098/12808,
5eq=2099/13064,
5eq=2100/13320,
5eq=2101/13576,
seq=2102/13832,
seq=2103/14088,

74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request
74 Echo (ping) request

18 ¢@ 4d 72 91 47 18 @
00 3c 85 48 00 00 7f 01
) 90 44 08 00 45 2b 00 01
67 68 69 6a 6b 6¢c 6d be
40 77 61 62 63 64 65 66 67

68 69

Modified packet header after

4d be de 72 08 0@ 45 00
34 ee @ a8 00 Oc 0 a8
08 3@ 61 62 63 64 65 66
6f 70 71 72 73 74 75 76

tt1=127 (no response found!)
tt1=127 (no response found!)
ttl=127 (no response found!)
tt1=127 (no response found!)
tt1=127 (no response found!)
ttl=127 (no response found!)
tt1=127 (no response found!)
tt1=127 (no response found!)
tt1=127 (no response found!)
tt1=127 (no response found!)
tt1=127 (no response found!)
ttl=127 (no response found!)
tt1=127 (no response found!)
tt1=127 (no response found!)
tt1=127 (no response found!)
tt1=127 (no response found!)
tt1=127 (no response found!)
tt1=127 (no response found!)
tt1=127 (no response found!)

<H 4

ghijklan
wabcdefg hi

MrG-- M--r

www.tetcos.com
March 2025

E

D E+ Babcdef
opgrstuv

Fig 16: FDI Traffic captured by the destination 192.168.0.68, which is the false data Injected in the
ICMP packet header by NetSim.
We can observe that the original ping traffic generated by the source 192.168.0.12 destined to

192.168.0.46 was passed via NetSim Emulation server 192.168.0.81. At the NetSim Emulation
server we implemented the FDI attack. After the FDI attack in NetSim will reinject the modified

packet to the actual network with Destination IP modified to 192.168.0.68. You can observe

that the real destination will not receive any ICMP Packets from source 192.168.0.12, since

the destination address in different. If there is a machine with IP 192.168.0.68 in the network,

then that machine will now receive the ICMP traffic from source 192.168.0.12.

Two Types of false data injection attacks: payload modification and header

modification

In each of the two cases described earlier, we can model two kinds of attacks:

1.

Packet payload change: The PING packet by default has its payload as

abcdefghijkimnopqrstuvwabcdefghi, we modify this to
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Packet header change: The destination IP address of the ping is changed from
192.168.0.46 to 192.168.0.68

Appendix: NetSim source code modifications

MS Visual Studio Development environment is required for editing and building NetSim

source codes. Please see this link on setting up Visual Studio

https://support.tetcos.com/support/solutions/articles/14000138721-what-components-of-

visual-studio-community-2022-to-install-and-configure-to-work-with-netsim-source-c

Ver 14.3

Page 11 of 15

http://www.tetcos.com/
https://support.tetcos.com/support/solutions/articles/14000138721-what-components-of-visual-studio-community-2022-to-install-and-configure-to-work-with-netsim-source-c
https://support.tetcos.com/support/solutions/articles/14000138721-what-components-of-visual-studio-community-2022-to-install-and-configure-to-work-with-netsim-source-c

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2025

To open our project source code section, in NetSim home screen to > your work - source

code - open code.

NetSim comes with inbuilt low-level functions to capture packets. This code is not open for
user modification. The code to access the payload/header and to modify the payload/header
is open to users and can be modified. We show below the source code changes we have made
in red. Users can alter these functions to implement their own FDI attacks. Once the code
changes done rebuild the project by right click on IP project-> Rebuild, Once you rebuild is

successful the project code modification will be affected in NetSim.

Case 1: Payload modification

Add a new function before fn_NetSim_IP_Run() and after ip_handle_processing_delay() in
IP.c file, in IP project.

static void ip_handle_processing_delay()

/Il Function to calculate the Internet Checksum
uint16_t calculateChecksum(const uint8_t* data, size_t length) {
uint32_t sum = 0;

/I Process each 16-bit chunk of data

while (length > 1) {
sum += ((uint16_t)data[0] << 8) + data[1];
data += 2;
length -= 2;

}

/l'If there's a remaining odd byte, add it to the sum
if (length == 1) {

sum += ((uint16_t)data[0] << 8);
}

/I Fold the 32-bit sum to a 16-bit checksum
while (sum >> 16) {

sum = (sum & OxFFFF) + (sum >> 16);
}

/I Return the one's complement of the final sum
return (uint16_t)(~sum);

}

/[Seperate into 2 Bytes

static void separateBytes(uint16_t value, uint8_t* highByte, uint8_t* lowByte) {
*highByte = (uint8_t)(value >> 8); // Get the high byte
*lowByte = (uint8_t)(value & OxFF); // Get the low byte

Ver 14.3 Page 12 of 15

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2025

/**

This function is called by NetworkStack.dll, whenever the event gets triggered
inside the NetworkStack.dll for IP.It includes NETWORK_OUT,NETWORK _IN and
TIMER_EVENT.

*/

_declspec(dllexport) int fn_NetSim_IP_Run()

Changes to fn_NetSim_IP_Run() in IP.c file, in IP project

_declspec(dllexport) int fn_NetSim_IP_Run()
{
//False Data
char s[BUFSIZ] = "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA™,
uint8_t checkszero = 0x00;
uint8_t packet_icmp[40];

switch (pstruEventDetails->nEventType)
{
case NETWORK_OUT_EVENT:
{
ptrlP_FORWARD_ROUTE route = NULL;
NetSim_PACKET* packet = pstruEventDetails->pPacket;
NETWORK_LAYER_PROTOCOL nLocalNetworkProtcol;
//[False Data Injection in Network Layer into packet payload and
regenerate the checksum field.
if (packet)
{
/[Device ID of Attacker
if (pstruEventDetails->nDeviceld == 4)

{
for (inti=28;i<60;i++)
packet->szPayload->packet[i] = s[i - 28];
//Modifying the payload by inserting False Data
}

//Checksum Recalculation
if (pstruEventDetails->nDeviceld == 4)
{
/I Read the packet data into a C array.
unsigned char* packet_data = (unsigned char*)packet-
>szPayload->packet;

//[Extract the ICMP Packet Payload
for (intk = 20; k < 60; k++) {

packet_icmp[k - 20] = (uint8_t)packet_datalk];
}

//Set the Checksum Variable to 0 while calculating the
checksum

packet_icmp[2] = checkszero;

packet_icmp[3] = checkszero;

Ver 14.3 Page 13 of 15

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2025

//Calculate the new checksum value for ICMP Packet

Payload

size_t length = sizeof(packet_icmp);

uint16_t checksum = calculateChecksum(packet_icmp,
length);

/[Separate the 16-bit value to two 8-bit values
uint8_t highByte, lowByte;
separateBytes(checksum, &highByte, &lowByte);

//Update the checksum value in checksum field
packet->szPayload->packet[22] = highByte;
packet->szPayload->packet[23] = lowByte;

}

nLocalNetworkProtcol =
fnGetLocalNetworkProtocol(pstruEventDetails);
if (nLocalNetworkProtcol)

fnCallProtocol(nLocalNetworkProtcol);
return O;

Case 2: Header modification

Changes to fn_NetSim_IP_Run() in IP.c file, in IP project

_declspec(dllexport) int fn_NetSim_IP_Run()
{
/I[False Data
char s[BUFSIZ] = "D"; //hexadecimal value for D is 68
switch (pstruEventDetails->nEventType)
{
case NETWORK_OUT_EVENT:
{
ptrlP_FORWARD_ROUTE route = NULL;
NetSim_ PACKET* packet = pstruEventDetails->pPacket;
NETWORK_LAYER PROTOCOL nLocalNetworkProtcol;
/I False Data Injection in Network Layer into packet header
if (packet)

/IDevice ID of Attacker

if (pstruEventDetails->nDeviceld == 1){
for (inti=19; i< 20; i++)

Ver 14.3 Page 14 of 15

http://www.tetcos.com/

© TETCOS LLP. All rights reserved.
www.tetcos.com
March 2025

packet->szPayload->packet[i] = s[i - 19];
}
}
nLocalNetworkProtcol =

fnGetLocalNetworkProtocol(pstruEventDetails);
if (nLocalNetworkProtcol)

{

fnCallProtocol(nLocalNetworkProtcol);
return O;

Ver 14.3 Page 15 of 15

http://www.tetcos.com/

