v14.2

Software Defined WSN based Location Aware Routing Protocol

Software: NetSim Standard v14.2, Visual Studio 2022, Python 3.11 and later

Project Download Link:
https://qgithub.com/NetSim-TETCOS/SDWSN-based-Location-Aware-Routing-

Protocol v14.2/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-

netsim-file-exchange-projects

Location Aware Routing (LAR)

Routing for an ad-hoc wireless network is challenging, many routing strategies have been proposed in
the literature. With the availability of affordable Global Position System equipped devices, Location-
Aware Routing provides a promising foundation for developing an efficient and practical solution for
routing in the ad-hoc wireless network.

Most Forward within Fixed Radius R (MFR)

MFR protocol is a geographic Location-Aware Routing protocol. MFR forwards packets to the neighbor
nodes within a set radius of the current node (not the route source) that makes the most forward progress
(or the least backward progress) along the line drawn from the current node to the destination. Progress
is calculated as the cosine of the distance from the current node to the neighbor node projected back
onto the line from the current node to the destination.

S(N1): d2 > d1, Next hop = N3
d4 > d3, Next hop = N4
d6 > d5, Next hop « D(N6)
» Route
Projection
Current Node to Dest

Figure 1: MFR Protocol Implementation

© TETCOS LLP. All rights reserved Page 1 of 9

https://github.com/NetSim-TETCOS/SDWSN-based-Location-Aware-Routing-Protocol_v14.2/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/SDWSN-based-Location-Aware-Routing-Protocol_v14.2/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

vi4.l

Here,

e S(N1) is the source node and D(NG6) is the destination node.

e N2 and N3 are in the transmission radius of S(N1).

e S0, according to MFR protocol, d1 and d2 are the projected distances of N2 and N3 respectively
on the line drawn from the current node i.e., S(N1) and the destination node D(N6):

e d2 > d1, therefore the next route hop node will be N3.

e N4, N5 and S(N1) are in the transmission radius of N3. Since S (N1) is already present in the
route list, skip it.

e S0, according to MFR protocol, d3 and d4 are the projected distances of N5 and N4 respectively
on the line drawn from the current node i.e., N3 and the destination node D(N6):

e d4 > d3, therefore the next route hop node will be N4.

e N5, D(N6) and N3 are in the transmission radius of N4. Since N3 is already present in the route
list, skip it.

e So, according to MFR protocol, d5 and d6 are the projected distances of N5 and D(N6)
respectively on the line drawn from the current node i.e., N4 and the destination node D(NG):

e d6 > d5, therefore the next route hop node will be D(N6).

¢ Route according to MFR: S(N1) -> N3 -> N4 -> D(NG).

Real Time Interaction in NetSim

NetSim allows users to interact with the simulation at runtime via a socket or through a file. User
Interactions make simulation more realistic by allowing command execution to view/modify certain device
parameters during runtime.

Python socket interface

e Python interfacing is a method to interface custom protocols like routing-based protocols with the
NetSim engine.

¢ In this project, we input NetSimCore.exe with routes generated via our routing protocol i.e., Most
Forward within Fixed Radius R (MFR) which is a geographic location-aware routing protocol. The
interaction between the routing protocol and the NetSimCore.exe is happening via socket
programming.

e The Real-Time Interaction has to be turned ‘True’ before running the simulation of the scenario.
This lets the NetSimCore.exe (server) to wait for the client (Python script) to connect using the
socket port.

o After the connection is established, we compute the routes based on our custom MFR protocol.
These routes are passed as static routes to the NetSimCore.exe server by the python script.

Python Script

The Socket programming code and MFR protocol code has written only in one separate file
(mfrProtocol.py). The protocols are written in a separate script file like here mfrProtocol.py:

e This python script reads the device coordinate and device ip address input from a file

device_log.txt having data in the following format:
SINK76.70 76.71 11.1.1.1

© TETCOS LLP. All rights reserved Page 2 of 9

v14.2

The protocol script has 4 functions to ultimately find the projected distance _projDist() on the line
drawn from the current node to the destination.

Mention the Device_log.txt file name in the python script at File I/P section:

with open(‘Device_log.txt','r") as f:

This python script reads the Application ID, Source ID and Destination ID input from a file
Appinfo_log.txt having data in the following format:

1SENSOR_2 SENSOR_3

Mention the Appinfo_log.txt file name in the python script at File for Appinfo section:

with open(‘Appinfo_log.txt’,'r') as f:

In the Declarations of MFR, change the Transmission range (meters) accordingly:

Tx =170

Note: The Transmission range is set to 170 based on the channel conditions and device properties for
this example. This may vary if any network other than the one discussed in this example is considered.

Example:

1.

The SDWSN_LAR_Workspace comes with a sample network configuration that are already
saved. To open this example, go to Your work in the home screen of NetSim and click on the
WITH_SDN from the list of experiments.
The saved network scenario consists of

a. 12 Wireless Sensor

w File Options Help | Network: Wsn | Workspace: SDWSN | Experiment: With-SDN
S Create Scenario 2 Set Traffic [El- Configure Reports i Show/Hide Info
T a . ;)
[save @ & o N Devices Links
) 3
£ close %};{}z Applications
File Run Simulation Sensors Sink Node Wired/Wireless Links Rapid Configurator
0 50 100 150 200 250 300
0 | | | | | |
TSl e SENSORAT ™ - - _
[T
-) N N T 3
o | . %) L . &
E » " L g s - A
., P ¢ sghsor10 . [AN b -
L T ' | He N - SENSOR 3
SENSORA - . ! v A e e :
’ ', SENSQR1Z . o
R ! " —Fep1_sENG0R_APP
5.0 p ' =t .
100 . ; Y
-
o \
SENSOR_12 e o8 R)
B B
SENSOR_8 SENSOR_9
o 4 ran %ﬁg&;SE_h_VS_E‘RTAPP
[g5 \
SENSOR_2 N SENSOR_6 aﬁ
i SENSOR.T
§:~ 5
0 :f_ﬁ\
SENSOR S

Figure 2: WSN Network Topology

© TETCOS LLP. All rights reserved Page 3 0of 9

v14.1

3. Application Properties

Application Properties

For Application 1

Source ID 2
Destination ID 3
For Application 2

Source ID 12
Destination ID 7
Transport Layer Protocol UDP

Table 1: Application Properties

4. Set Network layer protocol to DSR in both Wireless sensor and WSN Sink Node.
5. Channel Characteristics: No Pathloss
6. Run the Simulation for 500sec.

Results and discussion
e Upon running simulations with this configuration, Route from source to destination is as shown

below:
@ Application 1 Data flow : ->SENSOR_13 ->SENSOR_23(D)
@ Arplication 1 Data flow : ->SENSOR_13 ->SENSOR_7(D)

S R ¢ 1
S -}

~~ . _ SENSOR11

-

SENSOR_6

9
\\\\ . - E ‘_\g‘i
s E >4
SO SENSOR.9
N SENSOR_8
. . AR
~—~—— - N

w R N
; Pp2:SENSOR APP N
| B— 4o

Figure 3: Application packet flow in the Network Topology

© TETCOS LLP. All rights reserved Page 4 of 9

v14.2

Procedure to perform routing using python interface in NetSim

o For the python interface to interact with NetSim during the simulation, Interactive Simulation
parameters must be set to 'True' under the Real-Time Interaction tab, before running the
simulation.

= Click on Options tab and select Run Time Interaction option

Help | Metwork: Wsn | Workspace: SDWSN_MFR_LAR_Workspace v14 | Experiment: With-SDN

5 Create| Open MATLAB Interface [___} Configure Reports [z Show/Hide Info
. Run Time Interaction . — _
(=) CBR | siatic aRp ensorApp (=) CER ovi Video (Z SensorApp

Figure 4: Run time Interaction tab set Interactive Simulation as True

= |nthe Run time Interaction tab, Interactive Simulation option is set to True and click on OK

: El Runtime Interaction — O e

MetSim allows users to interact with simulations at runtime via command execution to
view/modify certain device parameters during runtime,

There are two options available for runtime interaction. Interaction can be set to be via a
socket or through a 'input.tet’ file in a predefined format,

This input.txt file accepts all the commands that Met5Sim's interactive simulation supports.

Interactive Simulation True A

File Name Input File Browse

(8] 4 Cancel

Figure 5: Interactive Simulation parameters set as TRUE

e This lets the NetSimCore.exe (server) to wait for the client (Python script) to connect using the
socket port. After the connection is established, we compute the routes based on our custom
MFR protocol. These routes are passed as static routes to the NetSimCore.exe server by the
python script.

¢ Run simulation for 500 seconds. NetSim Simulation Console starts and “waiting for client to
connect” and press any key to Continue.

e The MFR protocol and socket client code to connect to NetSimCore.exe is written in
mfrProtocol.py.

e Open Command Prompt in the directory (Ex: <Workspace Path>\bin_x64\Python) where the
python codes are present and run the command python mfrProtocol.py

© TETCOS LLP. All rights reserved Page 5 of 9

vi4.1l

Version 18.8.
ration. All r

C:\Users\Mil\Documents\NetSim\Workspaces\SDWSN_MFR_LAR Workspace_ v14\bin_x64\Python>Python mfrProtocol.py

Figure 6: Run Python mfrProtocol.py using cmd prompt.

e Python interface interacts with NetSim Simulation and routes the packets from source to
destination based on MFR protocols.

EN Ch\Windows\System32\cmd.exe — O %

icrosoft Corporation. All rights reserved.

SDWSN_MFR_LAR_Workspace_v14\bin_x ython>Python mfrProtocol.py

eated.
to MetSim.

_ continue__

Figure 7: Python interface interacts with NetSim Simulation

e Simulation continues and packets are routed from source to destination based on MFR protocol
as shown below:
o Application 1: SENSOR_2(S)->SENSOR_13->SENSOR_3(D)
o Application 2: SENSOR_12(S)->SENSOR_13->SENSOR_7(D)

Analyzing the device route tables in NetSim Results Dashboard

¢ NetSim Results Window contains route tables for each device from which we can identify the
routes updated by the python interface as per MFR protocol. Since the route that is formed is from
SENSOR_2(S) -> SENSOR_13 -> SENSOR_3(D), route entries for packets with destination
192.168.0.3 are added in the nodes SENSOR_2, SENSOR_13, and SENSOR_3 to forward
packets to SENSOR_13 and SENSOR_3 respectively. In the nodes SENSOR_2, SENSOR_13,

© TETCOS LLP. All rights reserved Page 6 of 9

v14.2

and SENSOR_3 static route entries added based on MFR protocol by the python socket program
can be found as shown below:

TCP_Metrics SENSOR_2_Table
IP_Metrics SENSOR 2
I (1P Fiaeiioy. T | Network Destination =~ Netmask/Prefix len Gateway Interface

sl [192.16803 255255255255 192168013 192.1680.2

192.168.0.0 255.255.0.0 on-link 192.168.0.2
SENSOR_3 224.0.0.1 255.255.255.255 on-link 192.168.0.2
SENSOR_4 224.0.00 240.0.0.0 on-link 192.168.0.2
SENSOR_S 255.255.255.255 255.255.255.255 on-link 192.168.0.2
SENSOR_6 0.0.0.0 0.0.0.0 192.1680.1 192.168.0.2

Figure 8: Route table for Wireless Sensor 2

The static route entry for SENSOR_2 specifies the next hop as SENSOR_13 which has the IP
192.168.0.13.

SENSOR_5 SENSOR_13_Table
SENSOR_6
SENSOR_13
SENSOR_7
Network Destination ~ Netmask/Prefixlen Gateway Interface
SENSOR_8
"'92.‘683.7 255.255.255.255 192.168.0.7 192.168.0.13
SENSOR_9
192.168.0.3 255.255.255.255 192.168.0.3 192.168.0.13
SENSOR_10 e
192.168.0.0 255.255.0.0 on-link 192.168.0.13
SENSOR_11
- 224.0.0.1 255.255.255.255 on-link 192.168.0.13
2
i 224.00.0 240.0.0.0 on-link 192.168.0.13
S 255.255.255.255 255255255255 ondink 192.1680.13

Figure 9: Route table for Wireless Sensor 13

The static route entry for SENSOR_13 specifies the next hop as the destination node SENSOR_3 which
has the IP 192.168.0.3.

Using NetSim Packet Trace to identify the route taken by packets from the source to the
destination.

NetSim Packet trace log file can be obtained by enabling the packet trace option in NetSim GUI before
running the simulation.

Upon running simulation with packet trace enabled, the packet trace log file can be accessed from the
NetSim Results Window using the Open Packet Trace link.

Once the packet trace log file is loaded you can filter a specific packet id in the PACKET_ID column to
view the path that the packet has taken.

Upon filtering Packet with id 4 we can observe the following in the packet trace:

280 2 0 Sensing Appl _SENSOR_APP SENSOR-2 SENSOR-3 SENSOR-2 SENSOR-13
501 2 0 Sensing Appl_SENSOR_APP SENSOR-2 SENSOR-3 SENSOR-13 SENSOR-3

Figure 10: NetSim Packet Trace

© TETCOS LLP. All rights reserved Page 7 of 9

vi4.l

Case 1: Without SDN

Application Metrics

End-to-end performance of applications running across the network

Application ID Application Name Source ID Destination ID Throughput (Mbps) Delay (ps)
1 App1_SENSOR_APP 2 3 0.000406 28775.301575
2 App2_SENSOR_APP 12 7 0.000404 28520.851089

Figure 11: Application Metrics Table for Without SDN

Case 2: With SDN

Application Metrics
End-to-end performance of applications running across the network.
Application ID Application Name Source ID Destination ID Throughput (Mbps) Delay (ps)
1 App1_SENSOR_APP 2 3 0.000408 25207.532549
2 App2_SENSOR_APP 12 7 0.000416 22606.572308

Figure 12: Application Metrics Table for with SDN

You can see from the Application Metrics table that in case 2, for creating route path the delay is less as
compared in case 1.

Note: Code Modifications are highlighted in red color.

Changes to fn_NetSim_Application_lInit(), in Application.c file, within Application project

© TETCOS LLP. All rights reserved Page 8 of 9

v14.2

/**
This function is used to initialize the parameter for all the application based on
the traffic type
*/
_declspec(dllexport) int fn_NetSim_Application_Init(struct stru_NetSim_Network
*NETWORK_Formal,NetSim_EVENTDETAILS *pstruEventDetails_Formal,char *pszAppPath_Formal,char
*pszWritePath_Formal,int nVersion_Type,void **fnPointer)
{
FILE* fp;
inti=0;
char f_name[BUFSIZ];
sprintf(f_name, "%s\%s\\%s", pszAppPath,"Python", "Device_log.txt");
fp = fopen(f_name, "w+");

if (fp)
{
for (i=0; i < NETWORK->nDeviceCount; i++)
fprintf(fp, "%s\t%.2I1\t%.2I\t%s\n", DEVICE_NAME(i + 1), DEVICE_POSITION(i + 1)->X,
DEVICE_POSITION(i + 1)->Y, DEVICE_NWADDRESS(i + 1, 1)->str_ip);
fclose(fp);
}

fprintf(stderr, "\nApppath: %s", pszAppPath);

sprintf(f_name, "%s\%s\\%s", pszAppPath,"Python", "Appinfo_log.txt");
fp = fopen(f_name, "w+");

if (fp)

{

/IAPP_CALL_INFO* info = applnfo[packet->pstruAppData->nApplicationld - 1]->appData;
ptrAPPLICATION_INFO* appInfo = (ptrAPPLICATION_INFO*)NETWORK->applnfo;
for (i=0; i < NETWORK->nApplicationCount; i++)
fprintf(fp, "%dUSENSOR_%dUSENSOR_%d\n", appInfo[i]->id, applInfo[i]->sourceList[0],
applnfo[i]->destList[0]);
fclose(fp);
}

return fn_NetSim_Application_Init_F();

© TETCOS LLP. All rights reserved Page 9 of 9

