Ver 14.2

DIS Flooding Attack in IOT Networks Running RPL

Software Recommended: NetSim Standard v14.2, Visual Studio 2022
Project Download Link:

https://github.com/NetSim-TETCOS/RPL-DIS-Flooding-v14-2/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and set up the Project in
NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-

setting-up-netsim-file-exchange-projects

1 Introduction

In RPL, DIS messages are used by nodes to join the network. A node sends a DIS message
to its neighbor nodes to request the routing information so that it may join the existing DODAG.
Thus, a new node continuously transmits DIS messages with a fixed interval until it receives
a DIO message from any neighbor node. Once a node receives a DIO message, it stops

transmitting DIS messages and joins the network by sending DAO to the solicited node.

A malicious node can utilize this feature to degrade the network performance by choosing
different DIS transmission intervals for periodically transmitting DIS messages to its
neighboring nodes; this is called a DIS flooding attack. This leads to an increase in the

network’s control packet overhead and power consumption.
2 Implementation in RPL (for 1 sink)

¢ In RPL the transmitter broadcasts the DIO during DODAG formation.

e The receiver on receiving the DIO from the transmitter updates its parent list, sibling
list, rank and sends a DAO message with route information.

e Malicious node upon receiving the DIO message instead of joining existing DODAG
just Drops DIO and frequently transmits DIS messages. Which forces normal nodes to

reset their trickle timers and flood the network with DIO messages.
A file Malicious.c is added to the RPL project.
The file contains the following functions:

e fn_NetSim_RPL_MaliciousNode(); //This function is used to identify whether a

current device is malicious or not in order to establish malicious behavior.

© TETCOS LLP. All rights reserved Page 1 of 7

https://github.com/NetSim-TETCOS/RPL-DIS-Flooding-v14-2/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

Ver 14.2
o rpl_drop_msg(); //This function is used to drop the DIO messages received by the
malicious nodes instead of replying with a DAO message.

You can set any sensor as malicious Node, and you can have more than one malicious node
in a scenario. Device IDs of malicious nodes can be set inside the

fn_NetSim_RPL_MaliciosNode() function in malicious.c file.
3 Example

The DIS-Flooding-Workspace comes with a sample network configuration that is already
saved.

To open this example, go to Your work in the home screen of NetSim and click on the
DIS_FLOOD_Casel_Example from the list of experiments.

The saved network scenario and the settings done is explained below:

T :
’ i

N = 1
E@, LOWPAN_Gateway 4

Figure 1: Network scenario showing a DIO Suppression attack in 1oT RPL project. Includes 3 sensors
(one malicious), a wired node, a router, and a LOWPAN gateway.

Application Properties

Source ID 2
Destination ID 6
Transport Protocol UDP
Other Properties Set Default
Channel
Characteristics Pathloss only
Pathloss Model Log distance
Pathloss Exponent 3.5

Table 1: Application and link properties.

© TETCOS LLP. All rights reserved Page 2 of 7

Ver 14.2

e Set Network Layer Routing Protocol to RPL in both sensor and LowPan_Gateway
o Device Properties: Go to Sensor Properties -> Network Layer -> DIS Interval -> 10ms.

¢ Run the Simulation for 100 seconds.
4 Results and Discussion

1. In packet trace, you will find that the malicious node (Device id 1) even after receiving
DIO from neighbor nodes it just Drops DIO and the malicious node frequently transmits
DIS messages to the neighbor nodes.

2. This will have a direct impact on the Application Throughput and Delay which can be
observed in the Application Metrics table present in the NetSim Simulation Results

window.

Simulation instructions in Visual Studio:
e For With DIS, Run the simulation of the imported workspace.

e For Without DIS, Reset the binaries of the imported workspace and run the

simulation.
e To reset the binaries, go to your Work -> Source Code -> Reset Binaries

To recheck the impact of the network performance With DIS, Rebuild the RPL project in
source code, Go to your Work -> Source Code -> Open-Source Code.

” File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help |Sear:h (Ctrl+Q) el ‘ NetSim
i@ |ﬁﬂ'ﬁ‘ - 'HRE|EESE -||x64 -| P Local Windows Debugger = [> 6"ﬁ|ﬁ=

Solution Explorer *Aax

©.g o--a08| =]

Search Solution Explorer (Ctrl+;) p|v
B3 Solution 'NetSirm' (1 of 1 project)

b [RPL

& Build
[Rebuild

Clean

View 3
Analyze and Code Cleanup 3
Project Only r
Retarget Projects

Scope to This

i}

MNew Solution Explorer View

Build Dependencies r

Add »

Figure 2: Source code of current Workspace

Case 1: Application generation rate Vs. Application throughput:

We fix the DIS interval to 10 milliseconds and vary the application generation rate to see the
impact of DIS flooding on the network performance.

Throughput (Mbps) Delay (ms)

© TETCOS LLP. All rights reserved Page 3 of 7

Ver 14.2

Generation Rate(Kbps) With DIS Without DIS With DIS Without DIS
60 0.0419 0.0597 7023.682 51.932
80 0.0460 0.0798 14518.141 52.009
100 0.0498 0.0997 19147.977 52.106
120 0.0515 0.1181 23208.916 726.934

Table 2: Throughput and delay with and without DIS flooding vary with the generation rate.

This can be further understood with the help of following plots:

Generation Rate vs Throughput

0121 _g— Throughput With DIS
Throughput Without DIS
0.11 A
0.10 4
& 0.09
[=9
o
=
2 0.08
=
o
3
2
£ 0.07
0.06 4
0.05 4 //-f °
0.04 1
60 70 80 30 100 110 120

Generation Rate (Kbps)

Figure 3: Figure shows as the generation rate increases, the throughput with DIS flooding is less
compared to without DIS flooding.

Generation Rate vs Delay

—e— Delay with DIS
Delay without DIS

20000

15000

Delay (ms)

10000 +

5000 A

T T T T T T T
60 70 80 20 100 110 120
Generation Rate (Kbps)

Figure 4: Figure shows as the generation rate increases, the delay with DIS flooding is more
compared to without DIS flooding.

© TETCOS LLP. All rights reserved Page 4 of 7

Ver 14.2

We can observe that the application throughput decreases in case of DIS flooding when

compared with the usual simulations for various application traffic generation rates.

Delay is comparatively high in the case of DIS flooding and increases with the increase in
generation rate. This is because the nodes are busy receiving and responding to DIS
messages from malicious nodes frequently. The nodes that receive DIS messages are forced

to reset their trickle timers and flood the network with DIO messages.
Case 2: DIS Interval Time Vs. Application throughput:

We fix the application generation rate to 250 Kbps and vary the DIS interval to see the impact

of DIS flooding on the network performance.

To change the DIS Interval parameter, go to Sensor Properties -> Network Layer ->

DIS_Interval -> 20ms.

DIS Interval (ms) Throughput (Mbps)

25 0.091
20 0.085
15 0.075
10 0.058

5 0.056

Table 3: DIS interval vs Throughput

This can be further understood with the help of the following plots:

DIS Interval vs Throughput

0.090 +

0.085 4

0.080 4

0.075 4

0.070

Throughput (Mbps)

0.065

0.060 4

0.055 A

T T T T T T T T T
5.0 75 10.0 125 15.0 17.5 20.0 225 25.0
DIS Interval (ms)

Figure 5: Figure shows as the DIS Interval increases the application throughput increases.

© TETCOS LLP. All rights reserved Page 5 of 7

Ver 14.2

We can observe that the application throughput decreases as we decrease the DIS Interval
time. Upon decreasing the DIS interval, more DIS messages will be sent by the malicious
nodes more frequently. Legitimate sensors spend more time processing and responding to
DIS messages than sending the data packets.

DIS flooding severely degrades the performance of Low Power and Lossy Networks (LLNS)

of the increase in control packet overhead.

C Code because for defining the malicious node

#include "main.h"
#include "RPL.h"
#include "RPL_enum.h"

#defineMALICIOUS_NODE1 1

int fn_NetSim_RPL_MaliciousNode(NetSim_EVENTDETAILS?*);
void rpl_drop_msg();

int fn_NetSim_RPL_MaliciousNode(NetSim_EVENTDETAILS* pstruEventDetails)
{

if (pstruEventDetails->nDeviceld == MALICIOUS_NODE1)

{ *For multiple malicious nodes use if(pstruEventDetails->nDeviceld == MALICIOUS_NODEL1
|| pstruEventDetails->nDeviceld == MALICIOUS _NODE2)*/

return 1;
}
return O;
}
void rpl_drop_msg()
{
fn_NetSim_RPL_FreePacket(pstruEventDetails->pPacket);
pstruEventDetails->pPacket = NULL;
}

Changes to rpl_process_ctrl_msg(),in RPL_Message.c file, within RPL project

void rpl_process_ctrl_msg()
{
switch (pstruEventDetails->pPacket->nControlDataType % 100)
{
case DODAG_Information_Object:
if (fn_NetSim_RPL_MaliciousNode(pstruEventDetails))
rpl_drop_msg();
else
rpl_process_dio_msg();
break;
case Destination_Advertisement_Obiject:
rpl_process_dao_msg();
break;
case DODAG_Information_Solicitation:
rpl_process_dis_msg();
break;
default:
fnNetSimError("Unknown rpl ctrl msg %d in %s",

© TETCOS LLP. All rights reserved Page 6 of 7

Ver 14.2

pstruEventDetails->pPacket->nControlDataType,
__FUNCTION_);
break;

© TETCOS LLP. All rights reserved Page 7 of 7

