
 Ver 14.2

© TETCOS LLP. All rights reserved Page 1 of 7

DIS Flooding Attack in IOT Networks Running RPL

Software Recommended: NetSim Standard v14.2, Visual Studio 2022

Project Download Link:

https://github.com/NetSim-TETCOS/RPL-DIS-Flooding-v14-2/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and set up the Project in

NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-

setting-up-netsim-file-exchange-projects

1 Introduction

In RPL, DIS messages are used by nodes to join the network. A node sends a DIS message

to its neighbor nodes to request the routing information so that it may join the existing DODAG.

Thus, a new node continuously transmits DIS messages with a fixed interval until it receives

a DIO message from any neighbor node. Once a node receives a DIO message, it stops

transmitting DIS messages and joins the network by sending DAO to the solicited node.

A malicious node can utilize this feature to degrade the network performance by choosing

different DIS transmission intervals for periodically transmitting DIS messages to its

neighboring nodes; this is called a DIS flooding attack. This leads to an increase in the

network’s control packet overhead and power consumption.

2 Implementation in RPL (for 1 sink)

• In RPL the transmitter broadcasts the DIO during DODAG formation.

• The receiver on receiving the DIO from the transmitter updates its parent list, sibling

list, rank and sends a DAO message with route information.

• Malicious node upon receiving the DIO message instead of joining existing DODAG

just Drops DIO and frequently transmits DIS messages. Which forces normal nodes to

reset their trickle timers and flood the network with DIO messages.

A file Malicious.c is added to the RPL project.

The file contains the following functions:

• fn_NetSim_RPL_MaliciousNode(); //This function is used to identify whether a

current device is malicious or not in order to establish malicious behavior.

https://github.com/NetSim-TETCOS/RPL-DIS-Flooding-v14-2/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

 Ver 14.2

© TETCOS LLP. All rights reserved Page 2 of 7

• rpl_drop_msg(); //This function is used to drop the DIO messages received by the

malicious nodes instead of replying with a DAO message.

You can set any sensor as malicious Node, and you can have more than one malicious node

in a scenario. Device IDs of malicious nodes can be set inside the

fn_NetSim_RPL_MaliciosNode() function in malicious.c file.

3 Example

The DIS-Flooding-Workspace comes with a sample network configuration that is already

saved.

To open this example, go to Your work in the home screen of NetSim and click on the

DIS_FLOOD_Case1_Example from the list of experiments.

The saved network scenario and the settings done is explained below:

Figure 1: Network scenario showing a DIO Suppression attack in IoT RPL project. Includes 3 sensors

(one malicious), a wired node, a router, and a LoWPAN gateway.

Application Properties

Source ID 2

Destination ID 6

Transport Protocol UDP

Other Properties Set Default

Link Properties

Channel
Characteristics

Pathloss only

Pathloss Model Log distance

Pathloss Exponent 3.5

Table 1: Application and link properties.

 Ver 14.2

© TETCOS LLP. All rights reserved Page 3 of 7

• Set Network Layer Routing Protocol to RPL in both sensor and LowPan_Gateway

• Device Properties: Go to Sensor Properties -> Network Layer -> DIS Interval -> 10ms.

• Run the Simulation for 100 seconds.

4 Results and Discussion

1. In packet trace, you will find that the malicious node (Device id 1) even after receiving

DIO from neighbor nodes it just Drops DIO and the malicious node frequently transmits

DIS messages to the neighbor nodes.

2. This will have a direct impact on the Application Throughput and Delay which can be

observed in the Application Metrics table present in the NetSim Simulation Results

window.

Simulation instructions in Visual Studio:

• For With DIS, Run the simulation of the imported workspace.

• For Without DIS, Reset the binaries of the imported workspace and run the

simulation.

• To reset the binaries, go to your Work -> Source Code -> Reset Binaries

To recheck the impact of the network performance With DIS, Rebuild the RPL project in

source code, Go to your Work -> Source Code -> Open-Source Code.

Figure 2: Source code of current Workspace

Case 1: Application generation rate Vs. Application throughput:

We fix the DIS interval to 10 milliseconds and vary the application generation rate to see the

impact of DIS flooding on the network performance.

 Throughput (Mbps) Delay (ms)

 Ver 14.2

© TETCOS LLP. All rights reserved Page 4 of 7

Generation Rate(Kbps) With DIS Without DIS With DIS Without DIS

60 0.0419 0.0597 7023.682 51.932

80 0.0460 0.0798 14518.141 52.009

100 0.0498 0.0997 19147.977 52.106

120 0.0515 0.1181 23208.916 726.934

Table 2: Throughput and delay with and without DIS flooding vary with the generation rate.

This can be further understood with the help of following plots:

Figure 3: Figure shows as the generation rate increases, the throughput with DIS flooding is less

compared to without DIS flooding.

Figure 4: Figure shows as the generation rate increases, the delay with DIS flooding is more

compared to without DIS flooding.

 Ver 14.2

© TETCOS LLP. All rights reserved Page 5 of 7

We can observe that the application throughput decreases in case of DIS flooding when

compared with the usual simulations for various application traffic generation rates.

Delay is comparatively high in the case of DIS flooding and increases with the increase in

generation rate. This is because the nodes are busy receiving and responding to DIS

messages from malicious nodes frequently. The nodes that receive DIS messages are forced

to reset their trickle timers and flood the network with DIO messages.

Case 2: DIS Interval Time Vs. Application throughput:

We fix the application generation rate to 250 Kbps and vary the DIS interval to see the impact

of DIS flooding on the network performance.

To change the DIS Interval parameter, go to Sensor Properties -> Network_Layer ->

DIS_Interval -> 20ms.

DIS Interval (ms) Throughput (Mbps)

25 0.091

20 0.085

15 0.075

10 0.058

5 0.056

Table 3: DIS interval vs Throughput

This can be further understood with the help of the following plots:

Figure 5: Figure shows as the DIS Interval increases the application throughput increases.

 Ver 14.2

© TETCOS LLP. All rights reserved Page 6 of 7

We can observe that the application throughput decreases as we decrease the DIS Interval

time. Upon decreasing the DIS interval, more DIS messages will be sent by the malicious

nodes more frequently. Legitimate sensors spend more time processing and responding to

DIS messages than sending the data packets.

DIS flooding severely degrades the performance of Low Power and Lossy Networks (LLNs)

of the increase in control packet overhead.

C Code because for defining the malicious node

#include "main.h"

#include "RPL.h"

#include "RPL_enum.h"

#defineMALICIOUS_NODE1 1

int fn_NetSim_RPL_MaliciousNode(NetSim_EVENTDETAILS*);
void rpl_drop_msg();

int fn_NetSim_RPL_MaliciousNode(NetSim_EVENTDETAILS* pstruEventDetails)
{
 if (pstruEventDetails->nDeviceId == MALICIOUS_NODE1)
 { /*For multiple malicious nodes use if(pstruEventDetails->nDeviceId == MALICIOUS_NODE1
|| pstruEventDetails->nDeviceId == MALICIOUS_NODE2)*/
 return 1;
 }
 return 0;
}

void rpl_drop_msg()
{
 fn_NetSim_RPL_FreePacket(pstruEventDetails->pPacket);
 pstruEventDetails->pPacket = NULL;
}

Changes to rpl_process_ctrl_msg(),in RPL_Message.c file, within RPL project

void rpl_process_ctrl_msg()
{
 switch (pstruEventDetails->pPacket->nControlDataType % 100)
 {
 case DODAG_Information_Object:
 if (fn_NetSim_RPL_MaliciousNode(pstruEventDetails))
 rpl_drop_msg();
 else
 rpl_process_dio_msg();
 break;
 case Destination_Advertisement_Object:
 rpl_process_dao_msg();
 break;
 case DODAG_Information_Solicitation:
 rpl_process_dis_msg();
 break;
 default:
 fnNetSimError("Unknown rpl ctrl msg %d in %s",

 Ver 14.2

© TETCOS LLP. All rights reserved Page 7 of 7

 pstruEventDetails->pPacket->nControlDataType,
 __FUNCTION__);
 break;
 }
}

