
NetSim VANETs

Detecting sybil node attacks in VANETs using Machine Learning

Applicable Release: NetSim v14.2 or higher

Applicable Version(s): NetSim Standard

Project download link: https://github.com/NetSim-TETCOS/Detecting-sybilnode-attacks-in-

VANETs/archive/refs/heads/main.zip

The URL has the exported NetSim scenario for the examples used in this document and the python scripts

to run classifiers.

https://github.com/NetSim-TETCOS/Detecting-sybilnode-attacks-in-VANETs/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/Detecting-sybilnode-attacks-in-VANETs/archive/refs/heads/main.zip

Outline
• Introduction to VANETs

• Sybil attack in VANETs

• Modeling Sybil attack in VANETs using NetSim

• Attack Scenarios with sybil nodes – Training data

• Attack scenarios with 1,1, 1, 2, 3, 3 sybil nodes

• Data processing

• Feature visualization

• Attack Scenarios with sybil nodes – Test

• Attack scenarios with 1, 1, 1, 3, 3, 3 sybil nodes

• Data processing

• Feature visualization

• Classification

• Detection of sybil nodes using ML based classifiers

• Confusion Matrix: Accuracy, Precision, F1 Score, Recall

• Comparison between different classifiers: Random Forest, K-Nearest Neighbor, Decision Tree,
Gradient boost.

2

Introduction to VANETs

• VANETs (Vehicular Ad Hoc Networks) are crucial for Intelligent Transportation Systems (ITS) and

road safety.

• Vehicles communicate with each other (V2V) and with infrastructure (V2I).

• VANETs operate in dynamic environments, with changing topologies due to vehicle speed and

varying road conditions.

• The communication architecture follows the IEEE 802.11p standard for PHY and MAC layers and

the IEEE 1609 standard for upper layers, enabling Wireless Access in Vehicular Environments

(WAVE).

A vehicular ad hoc network with 5 vehicles and 4 road-side units (RSUs)
3

Sybil attack in VANETs

• Definition: A Sybil attack in VANETs occurs when a
malicious vehicle creates multiple fake identities or
"ghost vehicles" in the network.

• Mechanism: The attacker broadcasts messages from
these fake identities, making it appear as if multiple
vehicles are present when in reality, it's just one
malicious node.

• Purpose: These attacks aim to manipulate traffic data,
influence routing decisions, or gain an unfair advantage
in safety-critical applications.

• Impact: Sybil attacks can lead to false traffic congestion
reports, manipulated voting systems in VANETs, and
compromised safety applications, potentially causing
accidents or traffic disruptions.

• Detection: RSSI values are used to estimate the
physical location of nodes in the network. In a Sybil
attack, multiple fake identities originating from the same
physical location should have very similar RSSI values
when measured by receiving nodes. By analyzing the
similarity of RSSI patterns malicious nodes can be
detected

4

Sybil attack scenario in VANETs

Sybil attack in VANETs using NetSim
• A Sybil attack in NetSim involves a malicious node (sybil attacker) creating illusory nodes, known as a

Sybil nodes.

• The malicious node transmits messages as if it were two separate entities, misleading the network into
believing there are two independent participants.

• To model this in NetSim, we create two nodes: V3 (the malicious node) and V9 (the Sybil node), where
both nodes behave as if they are distinct entities.

• The scenario has 5 vehicles (3 real + 1 attacker + 1 sybil node) and 4 RSUs, each vehicle transmits data
to all RSUs.

• Since the signal strength from the sybil attacker and the sybil node would be similar, RSSI-based
classification can be used to detect malicious nodes

The network topology in VANETs includes 1 malicious node (sybil attacker in red)

and 1 illusion (sybil node in orange) and 3 normal vehicular (in blue)
5

Training

6

Attack scenarios – Training data generation
• In NetSim, we created 5 scenarios with

varying total node counts (5, 7, 9, 11, 12 to
13).

• Total Node count = Normal node count +
Sybil attacker count + Sybil node count

• Sybil node count in the 6 scenarios: 1, 1, 1, 2,
3, 3.

• 1 malicious node in all cases

• 1, 1, 1, 2, 3, 3 sybil nodes in each
respective sample

• In NetSim, we enabled radio measurement
log for all scenarios

• We wrote a python script to analyze the log
file data and calculate the RSSI Power at
each RSU from each vehicle, RSSI difference
and RSSI Similarity

• Feature Extraction: RSSI Power, RSSI
Difference, RSSI Similarity

Yuan Yao et al., “Power Control Identification: A Novel Sybil Attack Detection Scheme in VANETs using RSSI,” 2019, IEEE.

The network topology in VANETs includes 1 malicious node (sybil attacker in red)

and 2 illusion (sybil node in green) and 3 normal vehicular (in blue)

7

Data processing and feature visualization
• Data extraction from IEEE radio measurement log to Excel

using Python script

• Total dataset: 57 vehicles, 3 features each

• Feature normalization process:

o Calculate the pairwise RSSI differences between vehicles
for each RSU.

o Compute the mean RSSI difference for each vehicle pair.

o Assign a threshold to classify vehicle pairs based on RSSI
differences.

o Identify similar vehicle pairs based on the threshold.

o Calculate the proportion of similar pairs from the total
vehicle pairs.

o Identify each unique vehicle pair.

o Calculate the average RSSI similarity for each unique pair.

o Label the similarity score as 0 or 1, depending on the
RSSI similarity value. We label the similarity score based on features

8

Feature visualization: 5 ,7 and 9 vehicles

9

Feature visualization:11,12 and 13 vehicles

10

Classifier training

Features data was used to train the following classifiers:

• K-Nearest Neighbor

• Random Forest

• XGBoost Classifier

• Decision Tree

11

Inference

12

Inference and Test Scenarios
• Created 6 new scenarios with different node counts (5, 6, 9,12,12, 14).

• Sybil node count: 1, 1, 1, 3, 3, 3.

• Normalized the data using a python script as explained in slide 8.

The network topology in VANETs includes 1 malicious node (sybil attacker in red)

and 2 illusion (sybil node in orange) and 3 normal vehicular (in blue)

13

Feature visualization: 5, 6 and 9 vehicles

14

Feature visualization: 12, 12 and 14 vehicles

15

Confusion matrix
• Confusion matrix summarizes the performance of a machine learning model on a set of test data.

• Displays the number of accurate and inaccurate instances based on the model’s predictions.

• Used to measure the performance of classification models

• Confusion matrix components:

• True Positive (TP): Predicted as positive, and it actually is positive.

• True Negative (TN): Predicted as negative, and it actually is negative.

• False Positive (FP): Predicted as positive, but it is actually negative.

• False Negative (FN): Predicted as negative, but it is actually positive

• Performance metrics:

• Accuracy: The overall correct predictions (TP + TN) divided by the total number of instances.

• Precision: The number of true positives divided by the total number of predicted positives (TP +
FP).

• Recall: The number of true positives divided by the total number of actual positives (TP + FN).

• F1 Score: The harmonic mean of precision and recall, providing a balance between the two.

16

Confusion Matrix: Accuracy, Precision, F1 Score, Recall

17

Comparison and future work

Classifier
True

Positives

True

Negatives

False

Positives

False

Negatives
Accuracy Precision Recall F1 Score

Random Forest 254 20 7 3 0.96 0.74 0.87 0.80

KNN 255 16 6 7 0.95 0.73 0.70 0.71

xgBoost 255 17 6 6 0.97 0.80 0.87 0.83

Decision Tree 255 20 8 3 0.96 0.74 0.74 0.74

Key Observations

• Accuracy: All classifiers perform well, with accuracy ranging from 95% to 97%.

• Precision: Varies from 73% (KNN) to 80% (xgBoost),

• Recall: Varies from 70% to 87% suggesting good but not perfect detection of Sybil nodes.

• F1 Scores: Range from 0.71 to 0.83; a reasonable performance; xgBoost has the best score.

Future Work

• Test with larger networks to assess scalability.

• Experiment with ensemble methods to potentially improve overall performance.

• Impact of different VANET scenarios (e.g., urban vs. highway) on classifier performance.

• Explore ways to improve precision
18

Appendix: How-to-Guide

19

How to classify data?
• To generate an excel file containing 3 feature messages for each vehicle, follow these steps,

• Modify the file paths in the python script according your setup.

• Open the command prompt.

• Navigate the folder containing python script.

• Run the “RSSI-Feature.py” script to process the radio measurement file and generate excel file.

• You can place the python script anywhere, as long as the file paths are correctly set to locate the
necessary data files, including the test and training data scenarios that contain the radio measurement
file.

• After running the script, it will generate the RSSI-features.csv file in the folder contains radio
measurement log.

20

How to Normalize the data?
• To generate an excel file containing the normalization of 3 feature messages of all the test and

training scenarios, follow these steps:

• Modify the file paths and input files required for merging the data into an Excel file in the Python
script according to your setup.

• Open the command prompt.

• Run Trained.py separately to obtain all features in a new Excel file. Manually provide the similarity
score.

• Run Test-Data.py to extract all features into a single Excel file.

21

How to run the classifiers
• After normalizing the data, name it 'Test-Data’.

• Run each classifier against the trained data by providing the file locations for both the Trained-Data
and Test data.

• Place the Test-Data , and Training-data in the same folder.

• Modify the path in the python script of each classifier according to your setup.

• Open the command prompt and run the script as shown below

The Python script generates four sets of predicted labels and uses this data to create confusion

matrices.
22

How to get the confusion matrix?
• After obtaining the predicted labels from the classifiers,

• Use these predicted label excel files along with the real training data to run the python script and
generate the confusion matrix.

• Place the predicted label excel files, and the real training data in the same folder.

• Modify the paths in the python script of Confusion-Matrix according to your setup.

• Open the command prompt and run the script as shown below.

• Each classifier's data generates a confusion matrix for that classifier

23

	Slide 1: NetSim VANETs
	Slide 2: Outline
	Slide 3: Introduction to VANETs
	Slide 4: Sybil attack in VANETs
	Slide 5: Sybil attack in VANETs using NetSim
	Slide 6: Training
	Slide 7: Attack scenarios – Training data generation
	Slide 8: Data processing and feature visualization
	Slide 9: Feature visualization: 5 ,7 and 9 vehicles
	Slide 10: Feature visualization:11,12 and 13 vehicles
	Slide 11: Classifier training
	Slide 12: Inference
	Slide 13: Inference and Test Scenarios
	Slide 14: Feature visualization: 5, 6 and 9 vehicles
	Slide 15: Feature visualization: 12, 12 and 14 vehicles
	Slide 16: Confusion matrix
	Slide 17: Confusion Matrix: Accuracy, Precision, F1 Score, Recall
	Slide 18: Comparison and future work
	Slide 19: Appendix: How-to-Guide
	Slide 20: How to classify data?
	Slide 21: How to Normalize the data?
	Slide 22: How to run the classifiers
	Slide 23: How to get the confusion matrix?

