NetSim VANETs

Detecting sybil node attacks in VANETs using Machine Learning

Applicable Release: NetSim v14.2 or higher

Applicable Version(s): NetSim Standard

Project download link: https://github.com/NetSim-TETCOS/Detecting-sybilnode-attacks-in-
VANETs/archive/refs/heads/main.zip

The URL has the exported NetSim scenario for the examples used in this document and the python scripts
to run classifiers.

https://github.com/NetSim-TETCOS/Detecting-sybilnode-attacks-in-VANETs/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/Detecting-sybilnode-attacks-in-VANETs/archive/refs/heads/main.zip

Outline

* Introduction to VANETSs
« Sybil attack in VANETs
« Modeling Sybil attack in VANETSs using NetSim

» Attack Scenarios with sybil nodes — Training data
» Attack scenarios with 1,1, 1, 2, 3, 3 sybil nodes
» Data processing
» Feature visualization

» Attack Scenarios with sybil nodes — Test
« Attack scenarios with 1, 1, 1, 3, 3, 3 sybil nodes
« Data processing
« Feature visualization
» Classification

» Detection of sybil nodes using ML based classifiers
« Confusion Matrix: Accuracy, Precision, F1 Score, Recall

« Comparison between different classifiers: Random Forest, K-Nearest Neighbor, Decision Tree,
Gradient boost.

Introduction to VANETs

 VANETs (Vehicular Ad Hoc Networks) are crucial for Intelligent Transportation Systems (ITS) and
road safety.

* Vehicles communicate with each other (V2V) and with infrastructure (V2I).

« VANETs operate in dynamic environments, with changing topologies due to vehicle speed and
varying road conditions.

 The communication architecture follows the IEEE 802.11p standard for PHY and MAC layers and
the IEEE 1609 standard for upper layers, enabling Wireless Access in Vehicular Environments
(WAVE).

{{A})) {K)) {E) ° @)’

R5U_4 R5U_S R5U_& RSU_7

A vehicular ad hoc network with 5 vehicles and 4 road-side units (RSUSs)

Sybil attack in VANETSs

Definition: A Sybil attack in VANETs occurs when a
malicious vehicle creates multiple fake identities or
"ghost vehicles" in the network.

Mechanism: The attacker broadcasts messages from
these fake identities, making it appear as if multiple
vehicles are present when in reality, it's just one
malicious node.

Purpose: These attacks aim to manipulate traffic data,
influence routing decisions, or gain an unfair advantage
in safety-critical applications.

Impact: Sybil attacks can lead to false traffic congestion
reports, manipulated voting systems in VANETs, and
compromised safety applications, potentially causing
accidents or traffic disruptions.

Detection: RSSI values are used to estimate the
physical location of nodes in the network. In a Syobil
attack, multiple fake identities originating from the same
physical location should have very similar RSSI values
when measured by receiving nodes. By analyzing the
similarity of RSSI patterns malicious nodes can be
detected

Legitimate node

Malicious node Sybil node 3

Sybil node 1 Sybil node 2

Sybil attack scenario in VANETs

Sybil attack in VANETs using NetSim

» A Sybil attack in NetSim involves a malicious node (sybil attacker) creating illusory nodes, known as a
Sybil nodes.

* The malicious node transmits messages as if it were two separate entities, misleading the network into
believing there are two independent participants.

« To model this in NetSim, we create two nodes: V3 (the malicious node) and V9 (the Sybil node), where
both nodes behave as if they are distinct entities.

* The scenario has 5 vehicles (3 real + 1 attacker + 1 sybil node) and 4 RSUs, each vehicle transmits data
to all RSUs.

« Since the signal strength from the sybil attacker and the sybil node would be similar, RSSI-based
classification can be used to detect malicious nodes

Sybil nodes
- - 3 - - » Normal nodes
(tA)) [(cg) : «?K) i “@K’
Malicious node #sU.4 RSUS RSU_S RSU_7
| » Roadside Unit
The network topology in VANETSs includes 1 malicious node (sybil attacker in red) 5

and 1 illusion (sybil node in orange) and 3 normal vehicular (in blue)

Training

Attack scenarios — Training data generation

In NetSim, we created 5 scenarios with
varying total node counts (5, 7, 9, 11, 12 to
13).

Total Node count = Normal node count +
Sybil attacker count + Sybil node count

Sybil node count in the 6 scenarios: 1, 1, 1, 2,
3, 3.

1 malicious node in all cases

« 1, 1, 1, 2, 3, 3 sybil nodes in each
respective sample

In NetSim, we enabled radio measurement
log for all scenarios

We wrote a python script to analyze the log
file data and calculate the RSSI Power at
each RSU from each vehicle, RSSI difference
and RSSI Similarity

Feature Extraction: RSSI Power, RSSI
Difference, RSSI Similarity

15 s W 3
Aom 5o /N ———————— Normal nodes

Sybil nodes

-(g‘:) " ((A)) K ((A)) b (K) N (K)

RSU_14

Malicious node
I—, Roadside Unit

The network topology in VANETSs includes 1 malicious node (sybil attacker in red)
and 2 illusion (sybil node in green) and 3 normal vehicular (in blue)

Yuan Yao et al., “Power Control Identification: A Novel Sybil Attack Detection Scheme in VANETSs using RSSI,” 2019, IEEE.

Data processing and feature visualization

« Data extraction from IEEE radio measurement log to Excel
using Python script

Pair RSSI Similarity Similarity Score

« Total dataset: 57 vehicles, 3 features each > o .

» Feature normalization process: o 0000 ;

o Calculate the pairwise RSSI differences between vehicles o 0000 X

for each RSU. 21 0.000 :

o Compute the mean RSSI difference for each vehicle pair. = .10 rl)

o Assign a threshold to classify vehicle pairs based on RSSI 14 0.000 0

differences. o 000 X

o ldentify similar vehicle pairs based on the threshold. > o :

o Calculate the proportion of similar pairs from the total > o .

vehicle pairs. 31 0.000 0

o ldentify each unique vehicle pair. i e :

o Calculate the average RSSI similarity for each unique pair. - 000 X

o Label the similarity score as 0 or 1, depending on the e oon X
RSSI similarity value. We label the similarity score based on features

Feature visualization: 5 ,7 and 9 vehicles

Normalized RSSI Similarity vs Vehicle IDs Normalized RSSI Similarity vs Vehicle IDs
0.25F o ® @ Normal Node 0.16 o o @ Normal Node
@ Malicious Node @ Malicious Node
@ Sybil Node @® Sybil Node

o
=
E =

0.20F

o

—

[N}
:

o

H

w
o
HA
o

Normalized RSSI Similarity
Normalized RSSI Similarity
o

0.10 0.06L
0.04r
0.05
0.02
0.00f ® o00f ® ¢ . ‘ b b e
4 5 s : : 1 2 3 4 5 6 7

Vehicle IDs Vehicle IDs

Normalized RSSI Similarity vs Vehicle IDs

012] ® @ Normal Node
@ Malicious Node
@ Sybil Node

o
i
=]

0.08

0.06

0.04

0.02

Normalized RSSI Similarity

0.00f @ ® ® ® ° ® ®
1 2 3 4 5 6 7 8 9
Vehicle IDs

Feature visualization:11,12 and 13 vehicles

Normalized RSSI Similarity vs Vehicle IDs

014l ° @ Normal Node Normalized RSSI Similarity vs Vehicle IDs
> @ Malicious Node ® ® @ Normal Node
o @ Sybil Node oal @ Malicious Node
= 0.12 3 . @ Sybil Node
= =
€ o010} =
i £ o3l
& 0.08} ° \
[7,] ® 0 o ®
- 0n
0067 & 0.2
9 -
% 0.04 | _g
£ ®
0.1
5 oo2f £
.
=2 o
0le® e e e e e e o <
i 2 3 4 5 6 7 8 9 10 11 of® & 6 &6 Z_L L & 6 o oo
Vehicle IDs 1 2 3 4 5 6 7 8 9 10 11 12

Vehicle IDs

Normalized RSSI Similarity vs Vehicle IDs

o o @ Normal Node
@ Malicious Node
@® Sybil Node

o o o = =
ES o) =} ¥
: . T -
[

Normalized RSSI Similarity
o ¢

o
o
[

X J
[

e & o o
1 2 3 4 5 6 7 8 9 10 11 12 13
Vehicle IDs

Classifier training

Features data was used to train the following classifiers:
« K-Nearest Neighbor

« Random Forest

« XGBoost Classifier

 Decision Tree

11

Inference

12

Inference and Test Scenarios

« Created 6 new scenarios with different node counts (5, 6, 9,12,12, 14).
« Sybil node count: 1,1, 1, 3, 3, 3.
» Normalized the data using a python script as explained in slide 8.

V6 Vi

15 5 3
o (=) Ay » Normal nodes

17 V15 96 V5 g 9

V17 V16 V7 ‘T‘T’ va V2

Sybil nodes
(‘A)) 10 ((A)) 1 ((A)) 12 ((A)) 13
RSU_10 v RSU_11 RSU_12 RSU_13

Malicious node |

(x) b

RSU_14

» Roadside Unit

The network topology in VANETSs includes 1 malicious node (sybil attacker in red)

and 2 illusion (sybil node in orange) and 3 normal vehicular (in blue)

13

Feature visualization: 5, 6 and 9 vehicles

Normalized RSSI Similarity

Normalized RSSI Similarity vs Vehicle IDs

0.25¢ [o o
@
®

0.201

0.15

0.10

0.051

0.00f @ o

1 2 3 4 5
Vehicle IDs

Normal Node
Malicious Node
Sybil Node

Normalized RSSI Similarity

Normalized RSSI Similarity vs Vehicle IDs

025} (] @ @ Normal Node
@ Malicious Node

@ Sybil Node

o
N
S

0.15f

o
N
)

0.051

0.00f @ [) [] []
1 2 3 4 5 6
Vehicle IDs

Normalized RSSI Similarity vs Vehicle IDs

0.175¢}
[]

o
=
v
o

0.125}

0.100}

0.075}

0.050 ¢} ®

Normalized RSSI Similarity

0.000}

@ Normal Node
@ Malicious Node
@® Sybil Node

4 5

Vehicle IDs

14

Feature visualization: 12, 12 and 14 vehicles

Normalized RSSI Similarity vs Vehicle IDs Normalized RSSI Similarity vs Vehicle IDs

() @ Normal Node ® @ Normal Node
@ Malicious Node @ Malicious Node
[] @ Sybil Node @ Sybil Node

i
~

I
o
o
o
.

o

n
I
o

o
i

=

w
=)
'S
[

e

[N}
o
[N}

Normalized RSSI Similarity
°
Normalized RSSI Similarity

o
o

e o e o o o o o e o o o
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Vehicle IDs Vehicle IDs

o
o
[]

r®
[

Normalized RSSI Similarity vs Vehicle IDs

® @ Normal Node
@ Malicious Node

Il?OEL @ Sybil Node
&
- ® o]
£ {
) 0.6
n
&

0.4 []
T
[T
-
E 0.2r
=
)
=

oor @ @ ® e o ¢ o L

l1 2 é éll 5 é % é 9 10 11 12 13 1I4
Vehicle IDs

Confusion matrix

« Confusion matrix summarizes the performance of a machine learning model on a set of test data.
» Displays the number of accurate and inaccurate instances based on the model’s predictions.
» Used to measure the performance of classification models

» Confusion matrix components:
» True Positive (TP): Predicted as positive, and it actually is positive.
« True Negative (TN): Predicted as negative, and it actually is negative.
» False Positive (FP): Predicted as positive, but it is actually negative.
» False Negative (FN): Predicted as negative, but it is actually positive

 Performance metrics:

« Accuracy: The overall correct predictions (TP + TN) divided by the total number of instances.

* Precision: The number of true positives divided by the total number of predicted positives (TP +
FP).

* Recall: The number of true positives divided by the total number of actual positives (TP + FN).
« F1 Score: The harmonic mean of precision and recall, providing a balance between the two.

16

Confusion Matrix: Accuracy, Precision, F1 Score, Recall

Confusion Matrix for Gradient Boost Classifier

Confusion Matrix for Random Forest Classifier

Predicted Class

o
>
= 7
n
<)
o
o
2
.- 3 20
o
o
=
Positive Negative
True Class

Confusion Matrix for K-Nearest Neighbour Classifier

Predicted Class

]
2
x 6

[0

=]
a

o

2

.- 7 16

o

o

2

Positive Negative

True Class

Predicted Class

Positive

Negative

255

Positive Negative
True Class

Confusion Matrix for Decision Tree Classifier

Predicted Class

Positive

0
-
L

©

o

0
=

253

Positive Negative 17

True Class

Comparison and future work

True True False False

Classifier Positives Negatives Positives Negatives Accuracy Precision Recall F1 Score
Random Forest 254 20 7 3 0.96 0.74 0.87 0.80
KNN 255 16 6 7 0.95 0.73 0.70 0.71
xgBoost 255 17 6 6 0.97 0.80 0.87 0.83
Decision Tree 255 20 8 3 0.96 0.74 0.74 0.74

Key Observations

Accuracy: All classifiers perform well, with accuracy ranging from 95% to 97%.

Precision: Varies from 73% (KNN) to 80% (xgBoost),

Recall: Varies from 70% to 87% suggesting good but not perfect detection of Sybil nodes.

F1 Scores: Range from 0.71 to 0.83; a reasonable performance; xgBoost has the best score.

Future Work

« Test with larger networks to assess scalability.

« Experiment with ensemble methods to potentially improve overall performance.

» Impact of different VANET scenarios (e.g., urban vs. highway) on classifier performance.

« Explore ways to improve precision
18

Appendix: How-to-Guide

How to classify data?

To generate an excel file containing 3 feature messages for each vehicle, follow these steps,
Modify the file paths in the python script according your setup.

Open the command prompt.

Navigate the folder containing python script.

Run the “RSSI-Feature.py” script to process the radio measurement file and generate excel file.

You can place the python script anywhere, as long as the file paths are correctly set to locate the
necessary data files, including the test and training data scenarios that contain the radio measurement
file.

After running the script, it will generate the RSSI-features.csv file in the folder contains radio
measurement log.

BN Ch\WindowshSystem32hemd. exe

Microsoft Windows [Version 18.6.19645.4804]
{(c) Microsoft Corporation. All rights reserved.

E:\Wanet\test-data\5>Python RS5S5I-Feature.py

20

How to Normalize the data?

» To generate an excel file containing the normalization of 3 feature messages of all the test and
training scenarios, follow these steps:

« Modify the file paths and input files required for merging the data into an Excel file in the Python
script according to your setup.

* Open the command prompt.

» Run Trained.py separately to obtain all features in a new Excel file. Manually provide the similarity
score.

* Run Test-Data.py to extract all features into a single Excel file.

CAWindows\System32\cmd.exe

Microsoft Windows [Version 10.0.19045.4894]
(c) Microsoft Corporation. All rights reserved.

E:\Vanet\Training-Data>python Trained-Data.pyg

21

How to run the classifiers

and Test data.

« v 4 > ThisPC » Local Disk (G:)

s Quick access

@ OneDrive - Personal
Desktop
Documents

NetSim_Documentation

After normalizing the data, name it 'Test-Data’.

Run each classifier against the trained data by providing the file locations for both the Trained-Data

Place the Test-Data , and Training-data in the same folder.

Modify the path in the python script of each classifier according to your setup.
Open the command prompt and run the script as shown below

> Test-Scenarios > RandomForestClassifier

RandomForest.py
B2 Test-Data.xlsx
B2 Trained-Data.xlsx

BN C\Windows'\System32icmd.exe

Microsoft Windows [Version 18.8.19845.4651]

{c) Microsoft Corporation. All rights

The Python script generates four sets of predicted labels and uses this data to create confusion

matrices.

How to get the confusion matrix?

 After obtaining the predicted labels from the classifiers,

* Use these predicted label excel files along with the real training data to run the python script and
generate the confusion matrix.

» Place the predicted label excel files, and the real training data in the same folder.
» Modify the paths in the python script of Confusion-Matrix according to your setup.
* Open the command prompt and run the script as shown below.

« Each classifier's data generates a confusion matrix for that classifier

v > ThisPC > Local Disk (G:) » Test-Scenarios > Confusion-Matrix
) Name ‘ Date modified Type Size
s Quick access
confusion.py 20-08-2024 15:01 Python File 4KB
@ OneDrive - Personal B: Test_with_Predictions-RF.xIsx 20-08-2024 14:35 Microsoft Excel Worksh..
Desktop B: Trained-Real-Data-900-Confusion-Matrix.x|sx 06-08-2024 11:58 Microsoft Excel Worksh.. 76 KB

Documents

Bl CWindows\Systemn32iomd.exe

Microsoft Windows [Version 18.6.19845.4651]
(c) Microsoft Corporation. All rights reserved.

G:\Test-Scenarios\Confusion-Matrix>python confusion.pyg

23

	Slide 1: NetSim VANETs
	Slide 2: Outline
	Slide 3: Introduction to VANETs
	Slide 4: Sybil attack in VANETs
	Slide 5: Sybil attack in VANETs using NetSim
	Slide 6: Training
	Slide 7: Attack scenarios – Training data generation
	Slide 8: Data processing and feature visualization
	Slide 9: Feature visualization: 5 ,7 and 9 vehicles
	Slide 10: Feature visualization:11,12 and 13 vehicles
	Slide 11: Classifier training
	Slide 12: Inference
	Slide 13: Inference and Test Scenarios
	Slide 14: Feature visualization: 5, 6 and 9 vehicles
	Slide 15: Feature visualization: 12, 12 and 14 vehicles
	Slide 16: Confusion matrix
	Slide 17: Confusion Matrix: Accuracy, Precision, F1 Score, Recall
	Slide 18: Comparison and future work
	Slide 19: Appendix: How-to-Guide
	Slide 20: How to classify data?
	Slide 21: How to Normalize the data?
	Slide 22: How to run the classifiers
	Slide 23: How to get the confusion matrix?

