vli4.1

Wireless Energy Harvesting for Internet of Things

Software: NetSim Standard v14.1, Visual Studio 2022

Project Download Link:
https://qgithub.com/NetSim-TETCOS/Wireless-Enerqgy-harvesting-for-10T-
v14.1/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and set up the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
netsim-file-exchange-projects

Introduction to Energy Harvesting:

Among various methods like vibration, light, and thermal energy extraction, wireless energy
harvesting (WEH) has proven to be one of the most promising solutions by virtue of its simplicity,
ease of implementation, and wide availability. This technology trend is gaining attraction as it offers
a fundamental approach to extend the lifespan of batteries. While harvesting from the environmental
sources is dependent on the presence of the corresponding energy source, RF (radio frequency)
energy harvesting provides unique advantages, being wireless and easily accessible from
transmitted energy sources like (TV/radio broadcasters, mobile base stations, and handheld radios),
It's cost-effective and allows for compact implementations.

Components of a WEH-Enabled Sensor Device:

A typical WEH-enabled sensor device comprises key components: an antenna, a transceiver, a
wireless energy harvesting (WEH) unit, a power management unit (PMU), a sensor/processor unit,
and optionally, an onboard battery.

Calculation of Harvested Power (PH):

The available Harvested power (Px) is determined by the Friis equation. It is directly proportional to
Transmitted power (P7), Path loss (P.), Transmitter antenna gain (Gt), Receiver antenna gain (Gr),
the Power conversion efficiency of the converter (PCEy), and the square of the wavelength (A), and
is inversely proportional to the square of the communication distance (r) between the source and the
device.

Energy Components and Distribution:

The energy consumed by the device can be categorized into communication energy (listening,
receiving, and transmitting) and computation energy (processing and sensing).

Listening energy (Evs)
Receiver energy (Erx)
Transmitter energy (Erx)
Processing energy (Epr)
Sensing energy (Esn)

To capture the energy distribution among the aforementioned energy consumers, weighting

© TETCOS LLP. All rights reserved Page 1 of 8

https://github.com/NetSim-TETCOS/Wireless-Energy-harvesting-for-IoT-v14.1/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/Wireless-Energy-harvesting-for-IoT-v14.1/archive/refs/heads/main.zip
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

vli4.1

coefficients, OLs> arx> Orx > Opr> Osn are assigned to them. The total average energy consumption
Ep= aisELs+ arxErx+ arxErx+ 0prEpr+ OsnEsn is then calculated as the sum of the product of these
coefficients and their respective energy components.

Battery Storage and Harvested Energy:

The total energy stored in the device's battery is denoted as Eg. On the other hand, the available
harvested energy per active-duty cycle is represented by E.

Topology Considerations:

We assume constant energy consumption for the receiver, processor, and sensor. However, the
energy consumption of the transmitter (E+x) is directly proportional to the square of the distance (r?)
,where rjjis the distance between the originating device (j) and the sink node (i), particularly in a ring
topology or multihop topology.The harvested energy (E+) is inversely proportional to r?j (here j is the
sink node and rij = rj).

IEEE Ref Paper:

Wireless Energy Harvesting for the Internet of Things
P. Kamalinejad C. Mahapatra; Z. Sheng ; S. Mirabbasi ; V. C. M. Leung ; Y. L. Guan
IEEE COMMUNICATIONS MAGAZINE - JUNE 2015

Real-World Context:

The advent of technology has revolutionized the agricultural landscape, giving rise to Smart
Agriculture Monitoring Systems (SAMS) that harness the power of advanced technology to optimize
farming practices, enhance crop yields, and promote sustainable agriculture. This discussion focuses
on the impact of energy harvesting on wireless sensor nodes within SAMS, utilizing NetSim as a
simulation tool.

Without Energy Harvesting

Smart Agriculture Monitoring Systems (SAMS) without energy harvesting rely on traditional power
sources, such as batteries, to operate wireless sensor nodes. These batteries have a limited lifespan
and require periodic replacement, increasing maintenance costs and environmental concerns due to
battery disposal. Additionally, battery depletion can lead to disruptions in data collection, affecting the
effectiveness of SAMS in monitoring crop health and environmental conditions

Soil-Moisture-Sensor Temperature-Sensor

> =

Network-Router

Edge—Gatewvay ((()))

-
~
-
~

Battery Air-Quality-Sensor

~—
-
-
-
-
~
-
~
-
-
~—
-

— &

Weather-Station-Sensor Crop-Health-Sensor

Cloud-Server

Figure 1: Real world scenario for Smart agriculture system Without Energy harvesting

© TETCOS LLP. All rights reserved Page 2 of 8

vli4.1

With Energy Harvesting

The integration of energy harvesting technologies into Smart Agriculture Monitoring Systems (SAMS)
revolutionizes the system by introducing sustainable energy sources for wireless sensor nodes. This
transformation offers several advantages, including reduced maintenance costs, enhanced
environmental sustainability, and uninterrupted data collection. Energy harvesting eliminates the need
for frequent battery replacements, significantly lowering maintenance expenses. By minimizing
battery usage, Continuous power supply from energy harvesting ensures uninterrupted data collection
from wireless sensor nodes, providing real-time insights into crop health and environmental
conditions.

i Soil-Moisture-Sensor Temperature-Sensor

Wind-Energy — = 5

v Network-Router
Edge-Gateway

A L / . ()

* R
@ — £\ R
- -."'h GERE

Solar-Energy Battery Aif-auﬂ|i|y-58n§or It

-
~—n
-
-

Energy harvesting

-
- S,
——
= -
= 7 -~

Weather-Station-Sensor Crop-Health-Sensor

RF-Energy

Figure 2: Real world scenario for Smart agriculture system With Energy harvesting

Wireless Energy Harvesting overview

o WEH significantly extends the operational lifespan of 10T devices, reducing the frequency of
battery replacements and associated maintenance costs.

e By eliminating the need for frequent battery replacements, WEH minimizes maintenance
expenses and enhances the overall efficiency of 10T networks.

e WEH promotes environmental sustainability by reducing battery usage and disposal,
mitigating the environmental impact of 0T devices.

e WEH facilitates the deployment of 0T devices in remote or inaccessible areas, expanding the
reach of loT networks and providing valuable insights into diverse environment

The Role of NetSim Simulator

NetSim serves as a valuable tool for assessing the effectiveness of energy harvesting technologies
in wireless sensor networks. By providing a comprehensive simulation environment, NetSim enables
researchers and engineers to evaluate various system parameters and optimize energy harvesting
performance. This capability empowers them to compare the performance of wireless sensor
networks with and without energy harvesting, assess the impact of energy harvesting efficiency,
optimize energy harvesting placement, analyze the impact of energy harvesting on network stability,
and investigate the scalability of energy harvesting. Through these simulations, NetSim plays a critical
role in developing optimized and sustainable solutions for wireless sensor networks.

© TETCOS LLP. All rights reserved Page 3 of 8

vli4.1

COMPARATIVE ANALYSIS:

1. The Energy_Harvesting_IOT_Workspace includes sample network configuration files, namely
Without-energy-harvesting and With-energy-harvesting, which are pre-saved.

1]
NetSim Standard

Network Simulation/Emulation Platform
Version 14.0.34 (64 Bit)

Ci\Users\Mil\Documents\NetSim\Workspaces\Wireless-Energy-Harvesting

New Simulation Ctrl+N Name Date Modified Network Type Size
Your Work Ctri+0 | & Without-Energy-Harvesting 11/28/2023 4:48 PM Internet_of_Things 517 MB

£ With-Energy-Harvesting 11/28/2023 4:50 PM Internet_of Things 517 MB
Examples

Experiments

Figure 3: Sample configuration files

2. We will now open the “Without-Energy-Harvesting” sample.
3. The network scenario consists of 16 sensors, a LOWPAN Gateway, a Router and a Wired Node

as shown below.

[| 10 15) B s 2 £ 40 5 R o, 55 0 6 e B ® 8 ® o5 100
0 | I . | > | | | L 4 L | L \ d5 | . | |
> 8 = R e
Vislesclsensor.t Wirless Sensor 5 Wiryess Serser.9 L7 Wil Sensor 13
10
2 i T 1 1
b s © . e
2 < i S
= EY A
Vapese fsensor2 Wirsless Sencor 6 Wirslss Sansor_14
17T 1 1
7 1
0 e e B) ST
e ————&)
| 4 P o St Rouk_ia
B3 .
50 4
R 33\ 3
rsiess]sensor 3 Wsless_Serso Wirslss Sensor_:

s P e
0s) s
4 4 £

Figure 4: Energy Harvesting Network Topology

4. Here, the Energy Harvesting parameter has been set to OFF in all Sensor nodes. To enable or
disable the energy harvesting setting, users can navigate to Interface(ZigBee)->Physical layer ->
IEE802.15.4 ->Power ->Set Power source to Battery of the sensor nodes, as shown below

© TETCOS LLP. All rights reserved Page 4 of 8

vli4.1

[Wireless_Sensor_6 Properties - m} x
L3 LY
AR B
-~
Antenna Gain 0
Antenna Height (m) 1
Connection Medium WIRELESS
Reference Distance dO{m) &
4 Power
Power Source Battery -
Energy Harvesting Off =
On
Initial Energy {mAh}
Transmitting Current {mA) 17
Idle ModeCurrent {mA) 33
Voltage (V) X
Receiving Current {mA) 9.6
SleepMode Current (mA)] | 0.237
hd

Figure 4:Energy Harvesting parameter

5. Run Simulation for 100 seconds and save the simulation results.
Results and Discussion
Once the simulation is complete, the NetSim result dashboard will open. From there, navigate to the

additional metrics section and select the Battery model under IEEE802.15.4_Metrics. This will display
the Battery model table.

Simulation Results
Y Network Performance Application_Metrics_Table
Llnk_Metncs- Application_Metrics
Queue_Metrics
: Application ID Application Name Packets Generated Packets Received Throughput (Mbps)
TCP-ME_"'CS 1 App1_SENSOR_APP 100 84 0.000336
IP_Metrics 2 App2_SENSOR_APP 100 83 0.000332
> IP_Forwarding_Table
. Battery model_Table 0 X
UDP Metrics
AODV Metrics Battery model [[] Detailed View
> |EEE802.15.4_Metrics Device Name Initial energy(mJ) Consumed energy(mJ) Remaining Energy(m))
Battery model WIRELESS_SENSOR_1 3888000.000000 1219.497597 3886780502403
Application_Metrics WIRELESS_SENSOR 2~ 3888000.000000 1205445050 3886794.554950
WIRELESS_SENSOR_3 3888000.000000 1205445050 3886794.554950
WIRELESS_SENSOR 4 3888000.000000 1219.768527 3886780.231472
WIRELESS_SENSOR_5 3888000.000000 1205445050 3886794.554950
WIRELESS_SENSOR_6 3888000.000000 1205445050 3886794.554950
WIRELESS_SENSOR_7 3888000.000000 1205445050 3886794.554950
WIRELESS_SENSOR_8 3888000.000000 1205409104 3886794.590895
\WIRFI FS SENSOR G 28820NNNNONNN 1205 445050 /RATOASAQSN v

Figure 5: Battery model table from Netsim result dashboard

© TETCOS LLP. All rights reserved Page 5 of 8

vli4.1

WITHOUT ENERGY HARVESTING:

In the Battery model table, you can observe the results for scenario without energy harvesting. This
table provides detailed insights into the energy consumption of each sensor node

Battery model_Table O X
Battery model ["] Detailed View
Device Name Initial energy(mJ) Consumed energy(mJ) Remaining Energy(mJ)

WIRELESS_SENSOR_1 3888000.000000 1219.497597 3886780.502403

WIRELESS_SENSOR_2 3888000.000000 1205445050 3886794.554950

WIRELESS_SENSOR_3 3888000.000000 1205445050 3886794,554950

WIRELESS_SENSOR_4 3888000.000000 1219.768527 3886780.231472

WIRELESS_SENSOR_S 3888000.000000 1205.445050 3886794.554950

WIRELESS_SENSOR_6 3888000.000000 1205.445050 3886794.554950

WIRELESS_SENSOR_7 3888000.000000 1205445050 3886794.554950

WIRELESS_SENSOR_8 3888000.000000 1205409104 3886794.590895

WIRELESS_SENSOR_9 3888000.000000 1205.445050 3886794.554950

WIRELESS_SENSOR_10 3888000.000000 1205.445050 3886794.554950

WIRELESS_SENSOR_11 3888000.000000 1205.445050 3886794.554950

WIRELESS_SENSOR_12 3888000.000000 1205.445050 3886794.554950

WIRELESS_SENSOR_13 3888000.000000 1205445050 3886794.554950

WIRELESS_SENSOR_14 3888000.000000 1205409104 3886794.590895

WIRELESS_SENSOR_15 3888000.000000 1205409104 3886794.590895

Figure 6: Battery model table without energy harvesting

WITH ENERGY HARVESTING:

Now, open and run the 'With-Energy-Harvesting' sample, where Energy Harvesting is enabled for all
sensor nodes. Upon comparing the remaining energy levels with the “without-energy-harvesting”
Scenario, you will observe increases in the working capability of sensors

Battery model_Table EIRC

Battery model [[] Detailed View

Device Name Initial energy(mJ)) Consumed energy(mJ) |[Remaining Energy(m)J)

219497597 388 096872

Figure 7 : Battery Model table with energy harvesting

Simulations can be performed for different values of Ex Fraction which may vary as per the efficiency
of the Energy Harvesting unit.

Note: You can observe slight variation in the remaining energy with and without energy harvesting as
the simulation time is in seconds.

© TETCOS LLP. All rights reserved Page 6 of 8

vid.l
Appendix: NetSim source code modifications

Changes to Battery Model.h within Battery Model project
/* We implemented the Batter Model*/

#ifndef NETSIM_BATTERY_MODEL H_
#define _NETSIM_BATTERY_MODEL _H_
#ifdef _ cplusplus

extern "C" {

#endif

#ifndef _BATTERY_MODEL_CODE_
#pragma comment(lib,"BatteryModel.lib")

typedef void* ptrBATTERY;
#endif

_declspec(dllexport) ptrBATTERY battery find(NETSIM_ID d,

NETSIM_ID in);

_declspec(dllexport) void battery _add_new_mode(ptrBATTERY battery, int mode, double current,
char* heading);

_declspec(dllexport) ptrBATTERY battery_init_ new(NETSIM_ID deviceld, NETSIM_ID interfaceld,
double initialEnergy, double voltage, double dRechargingCurrent);

_declspec(dllexport) bool battery set mode(ptrBATTERY battery, int mode, double time);
_declspec(dllexport) void battery animation();

_declspec(dllexport) void battery metrics(PMETRICSWRITER metricsWriter);
_declspec(dllexport) double battery get _remaining_energy(ptrBATTERY battery);
_declspec(dllexport) int battery_energy harvesting(ptrBATTERY battery, double eh_energy);
_declspec(dllexport) double battery_get _consumed_energy(ptrBATTERY battery, int mode);

#ifdef __ cplusplus

}
#endif

#endif //_NETSIM_BATTERY_MODEL_H_

Changes to double battery_get_remaining_energy (), Battery Model.c within Battery Model
project

_declspec(dllexport) double battery get _remaining_energy(ptrBATTERY battery)
{

return battery->remainingEnergy;
}
_declspec(dllexport) int battery _energy harvesting(ptrBATTERY battery, double eh_energy)

{

double eh_energy_mJ = eh_energy * ((pstruEventDetails->dEventTime - battery-
>modeChangedTime) / 1000000);

battery->remainingEnergy += eh_energy_mJ;

h |

7
Changes code to ChangeRadioState.c, within Zigbee project at the end of the file

#define EH_FRACTION 0.1
/I EH_FRACTION is the fraction of the received signal energy that can be
/I captured and harvested by the sensor.

© TETCOS LLP. All rights reserved Page 7 of 8

vli4.1

int calculate_eh(NETSIM_ID devl, NETSIM_ID dev2)

{
double rx_pwr = GET_RX_POWER_mw(devl, dev2, pstruEventDetails->dEventTime);
double eh_energy = EH_FRACTION * rx_pwr;
ptrBATTERY battery = WSN_PHY(dev2)->battery;
if (battery)
battery _energy_harvesting(battery, eh_energy);
}

Changes code to int fn_NetSim_Zigbee_Run(), 802_15_4.c file, within Zigbee project

case UPDATE_MEDIUM:

{

double dtime=pstruEventDetails->dEventTime;

NETSIM_ID nLink_Id, nConnectionID, nConnectionPortID, nLoop;
NETSIM_ID nTransmitterID;

nTransmitter|D = pstruEventDetails->nDeviceld,;

ZIGBEE_CHANGERADIOSTATE(nTransmitterID, WSN_PHY (nTransmitterID)->nRadioState, RX_ON_IDLE);
if(WSN_PHY(nTransmitterID)->nRadioState = RX_OFF)

WSN_MAC(nTransmitterID)->nNodeStatus = IDLE;

nLink_Id = fn_NetSim_Stack GetConnectedDevice(pstruEventDetails->nDeviceld,pstruEventDetails-
>ninterfaceld,&nConnectionID,&nConnectionPortID);

for(nLoop=1; nLoop<=NETWORK->ppstruNetSimLinks[nLink_Id-1]-
>puniDevList.pstruMP2MP.nConnectedDeviceCount; nLoop++)

{

NETSIM_ID ncon = NETWORK->ppstruNetSimLinks[nLink_ld-1]->puniDevList.pstruMP2MP.anDevlds[nLoop-
1];

if(ncon != pstruEventDetails->nDeviceld)

{

calculate_eh(nTransmitterID, nLoop);

WSN_PHY(ncon)->dTotalReceivedPower -= GET_RX_POWER_mw(nTransmitterID,ncon,pstruEventDetails-
>dEventTime);

if(WSN_PHY (ncon)->dTotalReceivedPower < WSN_PHY (ncon)->dReceiverSensivity)
WSN_PHY (ncon)->dTotalReceivedPower = 0;
}

}
This completes the code maodifications for energy harvesting.

© TETCOS LLP. All rights reserved Page 8 of 8

