vi4.1

Dynamic Traffic Light Control in NetSim VANETs

Software: NetSim Standard v14.1, SUMO 1.19.0, Visual Studio 2022

Project Download Link:

https://github.com/NetSim-TETCOS/Dynamic-Traffic-Light-Control-
vl14.1/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the Project in NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-up-
netsim-file-exchange-projects

Vehicular ad-hoc networks (VANETS)

VANETSs are created by applying the principles of mobile ad hoc networks (MANETS), vehicle-to-
vehicle and vehicle-to-roadside communication architectures co-exist in VANETs to provide road
safety, navigation, and other roadside services. VANETS are a key part of the intelligent transportation
systems (ITS) framework. In VANETS, Vehicles and roadside units (RSUs) are the communicating
nodes, providing each other with information, such as safety warnings and traffic information. Both
types of nodes are dedicated short-range communications (DSRC) devices. Roadside unit (RSU).
The RSU is a WAVE device usually fixed along the roadside or in dedicated locations such as at
junctions or near parking spaces.

Vehicles and RSUs have communication capabilities which allow them to send and receive network
packets. They periodically broadcast traffic safety messages called "Basic Safety Messages" (BSMs)
to all the other vehicles in its communication range In NetSim, users can model network traffic between
vehicles (V2V) and between vehicle to infrastructure (V2I).The BSM Application class sends and
receives the IEEE 1609 WAVE (Wireless Access in Vehicular Environments) Basic Safety Messages
(BSMs). The BSM is a 20-byte packet that is generally broadcast from every vehicle at a nominal rate
of 10 Hz. In NetSim this can be configured as a broadcast or as a unicast application.

Dynamic Traffic control

In the urban areas, the traffic light systems are designed in such a way that the waiting time of the
vehicles in the traffic signal is independent of the traffic density in that road. In VANETS the traffic
signal can be modelled to dynamically change the traffic light based on the traffic congestion in the
respective roads. In this example the emergency vehicles are prioritized over other vehicles and traffic
signals are controlled dynamically.

In the VANET example shown below, there are two lanes namely East-West (EW) lane and North-
South (NS) lane. At the intersection of roads there is a traffic signal that is programmed to allow only
the emergency vehicles in the NS lane and has regular traffic in the EW lane. The vehicles in the
scenario are allowed to have two movements which are going straight in the lane and taking a U-turn
at the end of the either of the lanes.

In this scenario, the vehicle movements are detected by the Roadside Unit (RSU). The Emergency
vehicles in the NS lane communicates with the RSU throughout the simulation time.

The vehicles in the EW lane and NS lane have green and red light respectively, except when RSU
triggers the change of traffic light in NS lane from red to green when the emergency vehicle

© TETCOS LLP. All rights reserved. Page 1 of 8

https://github.com/NetSim-TETCOS/Dynamic-Traffic-Light-Control-v14.1/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/Dynamic-Traffic-Light-Control-v14.1/archive/refs/heads/main.zip
https://support.tetcos.com/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

vi4.1

approaches the intersection of lanes where the traffic signal is present so that it is allowed to pass
through the traffic signal as soon as it arrives .Here the control signals are passed from RSU in NetSim
to the traffic light controller in SUMO through the Traffic Control Interface (TraCl).

Figure 1: The Scenario shown two lanes namely East-West (EW) lane and North-South (NS) lane

NetSim sumo interface

NetSim’s VANET module allows users to interface with SUMO which is an open-source road traffic
simulation package designed to handle vehicular & road networks. The road traffic simulation is done
by SUMO while NetSim does the network simulation along with RF (Radio Frequency) propagation
modelling in the physical layer. While SUMO Simulates the road traffic conditions and movements,
NetSim Simulates the communication occurring between the Vehicles.

NetSim and SUMO are interfaced using pipe’s. A pipe is a section of shared memory that processes
use for communication. SUMO process writes information to pipe, then NetSim process reads the
information from pipe. On running the Simulation, SUMO determines the positions of vehicles with
respect to time as per the road conditions. NetSim reads the coordinates of vehicles from SUMO
(through pipes) in runtime and uses it as input for vehicles mobility.

Traffic Signal phases

For this example, four phases of traffic signal are defined in sumo as shown below. Here green light
indicates that vehicles can cross the traffic signal. Red light indicates that vehicles must stop at the
traffic signal. Yellow light indicates that the vehicles must decelerate and finally stop when traffic signal
changes to red.

Phase 0: This phase indicates that NS lane has green light and EW lane has red light for a duration
of 10s.

Phase 1: This phase indicates that NS lane has yellow light and EW lane has red light for a duration
of 6s.

Phase 2: This phase indicates that NS lane has red light and EW lane has green light for a duration
of 31s.

Phase 3: This phase indicates that NS lane has red light and EW lane has yellow light for a duration
of 6s.

© TETCOS LLP. All rights reserved. Page 2 of 8

vi4.1

In this scenario traffic signal is always in phase 2 until an emergency vehicle in NS lane triggers the
signal change from phase 2 to phase 3. When the duration of phase 3 is completed, the signal goes
to phase 0.

[<onfiguration.natami - netedi 1,190 - ® o
Bl Modss kit Brocesing Locete Tools Winciw Lengusge bl | | INSFRESGHN 8 Demnd mow (O
ad s [W@ O s < 0@ QU ESNENT =L T E R [+

Edit Traffic Light
- Tl

Figure 2: Four phases of traffic signal defined in sumo

Example

1. The Dynamic_Traffic_Light_Signaling comes with a sample configuration that is already
saved. To open this example, go to Your Work and click on the Dynamic_Traffic_Control from
the list of experiments.

2. The saved network scenario shown below consists of 6 vehicles, 5 in the EW lane and one
emergency vehicle in the NS lane. The emergency vehicle transmits BSM Application packets
periodically to RSU.

@l

Figure 3: Network topology in this project

© TETCOS LLP. All rights reserved. Page 3 of 8

vi4.1

3. The SumoRun.py file, located in the bin_x64 directory of the workspace, which serves the
purpose of interfacing NetSim with Sumo. It has been modified to facilitate dynamic changes
in traffic light phases.

4. Run the Scenario, you will observe that as the simulation starts in NetSim, SUMO gets
initialized and there are three windows open during the runtime. NetSim Console shows the
Control messages being sent to sumo, Sumo simulation is seen in other console where the
received control messages are displayed, simultaneously in the Sumo GUI window the vehicle
movement and traffic signal can be seen when zoomed.

Results and discussion

It can be observed that when the control signal is sent from NetSim to Sumo (can be seen in NetSim
console) the Traffic signal changes from phase 2 to phase 3 as soon as the emergency vehicle
arrives in the NS lane (can be seen in Sumo GUI).

1. The Sumo GUI and Sumo console shown below is traffic signal being in phase 2.

2. The image shown below is when the lane is zoomed and the traffic signal phase 2 can be
observed.

3. The control message being sent from NetSim to Sumo can be seen in the image below.

BT Ci\Usersheniit) Documants' NetSim! Werkspaces\ Dynamic_Traffic_Light Signalibin x64\Vanet.exe

Figure 4: Control Message received from NetSim

8| C\Users\mihit\Documents\NetSim\Workspaces\Dynamic_Traffic_Light_Signal\bin_x64\NetSimCore.exe -] X
lity init..
mmand for opening Sumo - start vanet.exe -main "D:\Temp-path\NetSim\std_14.@\\ConfigSupport\Configuration.suy|

s\Dynamic_Traffic_Light_Signal\src\Simulation\Mobility\Sumo_interface.c:43: In|

umo and NetSim in real time
one
nit done.

initialized
reated
ation kernel suc

ulation in progress...
CTRL+C to terminate the simulation. Results will be calculated till termination time

completed... Simulati ime .000 ms Event
Sumo from NetSi E c light

© TETCOS LLP. All rights reserved. Page 4 of 8

vi4.1

Figure 4: Control message being sent from NetSim to Sumo

4. Traffic signal changes from phase 2 to phase 3 indicating that vehicles in the EW lane have to
slow down due to the control message received by NetSim in the sumo console is shown

below.

7 Ci\Users\mihit\ Documents\NetSim! Workspaces\Dynamic_Trafic_Light_Signal\bin_x54\Vanet exe - o X

Figure 5: Traffic signal changes from phase 2 to phase 3

5. The traffic signal changes from red to green in the NS lane which can be observed in the traffic
signal shown below.

Figure 6: Traffic signal changes from red to green in the NS lane

Inference:

In this example, a simple scenario with a single emergency vehicle in one of the lanes shows that
the RSU in VANETS can be used to control the traffic signal dynamically by communication between
vehicles and RSUs. Further the real time scenarios can be created based on this example.

Appendix: NetSim source code modifications

Changes to int fn_NetSim_Application_Run(), in Application.c file, within Application
project

[*Trafic light cases
Case 0: no change in traffic light

Case 1:change traffic light
*/

© TETCOS LLP. All rights reserved. Page 5 of 8

vi4.1

NETSIM_ID vehicle, rsu;
vehicle = pstruEventDetails->pPacket->nSourceld;

NETSIM_Name vehicle_name = DEVICE_NAME(pstruEventDetails->pPacket->nSourceld);
rsu = pstruEventDetails->nDeviceld;

double time = pstruEventDetails->dEventTime;

double y rsu = DEVICE(rsu)->pstruDevicePosition->Y;

double y_vehicle = DEVICE(vehicle)->pstruDevicePosition->Y;

NETSIM_ID nApplicationld = pstruEventDetails->nApplicationld; //Unique id of application
int c;

if (y_vehicle <(y_rsu + 210) && y_vehicle>(y_rsu - 210))

c=2;

}

else if (y_vehicle > (y_rsu + 210) || y_vehicle < (y_rsu - 210))
c=1,

if ((count_message == 2) && (c == 1))
count_message = 1,

char temp[BUFSIZ] = "no change in traffic light";
char temp1[BUFSIZ] = "change traffic light";

if (c==1)

{

for (inti=0; i < strlen(temp); i++)

messageli] = templi];

else

{

if (count_message == 1)

{

for (inti=0; i < strlen(temp); i++)
{

message[i] = \0';

}

for (inti=0; i< strlen(templ); i++)
messageli] = templ[i];
count_message++;

fprintf(stderr, "\n Message to Sumo from NetSim: %s \n", message);

}

else

{

for (inti=0;i < strlen(templ); i++)
message[i] = \0';

for (inti=0; i< strlen(temp); i++)
message(i] = templi];

break;

}
}

double coordinates = corr(message);

process_saej2735_packet(pstruPacket);

fn_NetSim_Application_Run() The code mentioned above is part of the this function. This function
is called only when there is APP-IN event at the RSU when an RSU receives a message from the
emergency vehicle. The location of the emergency vehicle in the NS lane is compared with the location
of the RSU. The threshold value set for comparison takes time required to change the traffic signal
from phase 2 to phase 3 into consideration. When the vehicles are near the RSU, the signal change
message is sent from NetSim to sumo via the pipe that is created for the communication between
NetSim and sumo process.

© TETCOS LLP. All rights reserved. Page 6 of 8

vi4.1

_declspec(dllexport) double *corr(char* id) This function sends the traffic signal message after
comparison, to sumo via the pipe and returns null values. When there is no change in signal the
function returns co-ordinates of the vehicles in the scenario.

Sumo API: getPhase() Returns the index of the current phase in the current program.

setPhase() Sets the phase of the traffic light to the given. The given index must be valid for the current
program of the traffic light, this means it must be between 0 and the number of phases known to the
current program of the tls - 1.

getIDList() Returns a list of ids of all vehicles currently running within the scenario

traci.vehicle.getPosition() Returns the position (two doubles) of the named vehicle (center of the
front bumper) within the last step [m,m]; error value: [-2/30, -2"30].

Changes to SumoRun.py

Import Sumo Libraries
import traci, string
import traci.constants as tc

traci.init(PORT)
print(" Running Sumo Simulation...")

traci.simulationStep() #skip the fist step to avoid termination

while traci.simulation.getMinExpectedNumber() > O:

garbage= "hello".encode() #Send Garbage
win32file.WriteFile(pl, garbage)

jk =win32file.ReadFile(pl, 4096) #Read vehicle from Netsim
vehicle_from_Netsim=jk[1].lower()[:-1] #convert to lower case
vehicle_from_Netsim = vehicle_from_Netsim.decode("utf-8")

if ((vehicle_from_Netsim == "change traffic light")):

print("\n message received from netsim to change traffic light")
traci.trafficlight.setPhase("0", 2)

if traci.trafficlight.getPhase("0") == 2:
traci.trafficlight.setPhase("0", 3)

print("\n trafic light is changing from phase 2 to phase 3")
traci.simulationStep()

else:

traci.trafficlight.setPhase("0", 2)

print("\n trafic light is changing from phase 3 to phase 2")
traci.simulationStep()

win32file.WriteFile(p1,

‘'c’.encode()) # The vehicle was found, being sent to Netsim for Connection('c' for confirmation)
position_x = str(0)

position_y = str(0)

win32file.WriteFile(pl, position_x.encode())
win32file.WriteFile(pl, position_y.encode())

else:

© TETCOS LLP. All rights reserved. Page 7 of 8

vi4.1

k=0 #Flag if vehicle found
k5=traci.vehicle.getIDList()

foriin k5:

if i.lower() == vehicle_from_Netsim: #If vehicle found in sumo

k=1 #Turn on flag

break;

if k==1:

win32file.WriteFile(p1, 'c.encode()) #The vehicle was found, being sent to Netsim
for Connection('c' for confirmation)

#get coordinates

position_x = str(traci.vehicle.getPosition(i)[0])

position_y= str(traci.vehicle.getPosition(i)[1])

#send to Netsim

win32file.WriteFile(p1, position_x.encode())

win32file.WriteFile(pl, position_y.encode())

#time.sleep(0.5)

if i == k5[0]: #For every first vehicle present in list of
vehicles, simulate

traci.simulationStep()

else :

win32file.WriteFile(p1l, 'f'.encode()) #Send not found to Netsim ('f' for denial
of connection)

traci.close()

pl.close()

The traffic signal is initially in phase 2. This is done by using the setPhase() API. getPhase() is used
to get the current traffic signal phase. getIDList() is used to get the vehicles in the scenario and
traci.vehicle.getPosition() is used to get their instantaneous location in order to send the location of
the vehicles to the NetSim using win32file.WriteFile(). The win32file.ReadFile() is used to read the
message sent from NetSim. When the signal has to be changed, the traffic signal is changed from
phase 2 to phase 3 using the setPhase() API.

© TETCOS LLP. All rights reserved. Page 8 of 8

