
 Ver 14.1

© TETCOS LLP. All rights reserved Page 1 of 9

DIO Suppression Attack in RPL

Software: NetSim Standard v 14.1, Visual Studio 2022, MATLAB R2019 or higher

Project Download Link:

https://github.com/NetSim-TETCOS/DIO-Suppression-attack-in-IoT-RPL-
v14.1/archive/refs/heads/main.zip

Follow the instructions specified in the following link to download and setup the project in

NetSim:

https://support.tetcos.com/en/support/solutions/articles/14000128666-downloading-and-setting-
up-netsim-file-exchange-projects

1 Introduction

In DIO Suppression Attack, a malicious node broadcast DIO messages to legitimate nodes. If

malicious node transmits repeatedly a DIO message that is considered consistent by the

receiving nodes. If the nodes receive enough consistent DIOs, they will suppress their own

DIO transmission. Since DIO messages are exploited to discover neighbours and the network

topology, their continuous suppression can cause some nodes to remain hidden and some

routes to remain undiscovered. DIO Suppression attacks affect the performance of IoT

networks protocols such as RPL protocol.

2 Implementation in RPL (for 1 sink)

In RPL the transmitter broadcasts the DIO during DODAG formation.

• The receiver on receiving the DIO from the transmitter updates its parent list, sibling

list, rank and sends a DAO message with route information.

• Malicious node upon receiving the DIO message it transmits DIO message repeatedly

to legitimate nodes.

• The legitimate nodes on listening to the malicious node DIO message they will

suppress their own DIO transmission.

• The continuous suppression can cause some nodes to remain hidden and some routes

to remain undiscovered.

The DIO.c file contains the following functions

1. fn_NetSim_RPL_MaliciousNode(); //This function is used to identify whether a

current device is malicious or not in-order to establish malicious behaviour.

2. fn_NetSim_RPL_MaliciousNodeReplay(); //This function is used by the

malicious node to transmit DIO message repeatedly to legitimate nodes.

https://github.com/NetSim-TETCOS/DIO-Suppression-attack-in-IoT-RPL-v14.1/archive/refs/heads/main.zip
https://github.com/NetSim-TETCOS/DIO-Suppression-attack-in-IoT-RPL-v14.1/archive/refs/heads/main.zip
https://support.tetcos.com/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects
https://support.tetcos.com/support/solutions/articles/14000128666-downloading-and-setting-up-netsim-file-exchange-projects

 Ver 14.1

© TETCOS LLP. All rights reserved Page 2 of 9

You can set any device as malicious, and you can have more than one malicious node in

a scenario. Device id’s of malicious nodes can be set inside the

fn_NetSim_RPL_MaliciousNode() function.

3 With-DIO Suppression Attack

1. The Workspace DIO_Suppression_Attack_using_RPL_v14 comes with a sample

network configuration that is already saved.

2. Go to Your Work option in NetSim Home Screen and open the saved example,

DIO_Suppression_Attack_Example. The network scenario and the settings done is

explained below:

Figure 1: Network scenario showing a DIO Suppression attack in IoT RPL project. Includes 8 sensors

(one malicious), a wired node, a router, and a LoWPAN gateway.

Note: In above screenshot Red color Wireless_Sensor_Node_11 is a malicious node.

Application 1

Source DEVICE ID 1

Destination DEVICE ID 10

Packet Size 50 Bytes

Inter Arrival Time 1000000 μs

Packet Size

Application 2

Source DEVICE ID 4

Destination DEVICE ID 10

Packet Size 50 Bytes

Inter Arrival Time 1000000 μs

Link Properties (Link 1)

Channel
Characteristics

Pathloss Only

Pathloss Model LOG DISTANCE

Pathloss Exponent 2.5

Table 1: Application and link properties.

3. Go to LOWPAN Gateway Properties >Network Layer > RPL >DIO Redundancy Constant

> 6.

 Ver 14.1

© TETCOS LLP. All rights reserved Page 3 of 9

Figure 2: Setting the DIO Redundancy constant value to 6.

• The DIO suppression attack requires the adversary to transmit only DIO Redundancy

Constant(k) messages at each Trickle period.

• DIO Redundancy Constant(k) acts as suppression threshold, as we set 6, the malicious

node will replay the DIO message 6 times to the neighbouring nodes. After replaying

the DIO message, the neighbouring nodes will suppress their own DIO transmission.

4. Run simulation and press any key to continue

5. It will open MatlabInterface.exe console window. You will observe that as the simulation

starts in NetSim, MATLAB gets initialized and the DODAG plot associated with the IoT

network is plotted during runtime.

4 Without-DIO Suppression Attack

• To run simulations without DIO Suppression attack, open the Source Code click on

Your Work > Source Code > Open Code

• In RPL project, open RPL.h and set the value of the variable DIO_ATTACK_ENABLE

to 0 instead of 1 as shown below

 Ver 14.1

© TETCOS LLP. All rights reserved Page 4 of 9

Figure 3: Defining 0 or 1 in the RPL.h file to set the attack status.

• Rebuild the RPL Project and run Simulation.

5 Results and discussion

Case 1: With DIO Suppression Attack

Figure 4: Sensor 4 suppressing its own DIO messages results in zero throughput for Application 2,

due to a malicious node continuously sending DIO messages to Sensors 4. The RPL log shows

information about the DODAG with the DIO suppression attack

 Ver 14.1

© TETCOS LLP. All rights reserved Page 5 of 9

The result dashboard provides access to the RPL log file, Where we can see the detailed

information about the DODAG formation process.

DODAG Formation Graph:

Figure 5: The DODAG shows that Sensor 4 is suppressed, so it has not joined the DODAG.

When root node (LowPan_Gateway) broadcast the DIO message all nodes that are present

in the communication range will also broadcast their own DIO messages but when malicious

node broadcasts the DIO message, it will repeatedly transmit the DIO message to the

neighbour nodes such that it prevents the DIO messages from other neighbour nodes

reaching them.

So, it degrades the routing information, and some nodes remain hidden in the network.

We can observe from the above graph that Wireless_Sensor_4 is not part of DODAG

formation as it is not discovered and remain hidden in the network.

Case 2: Without DIO Suppression Attack

 Ver 14.1

© TETCOS LLP. All rights reserved Page 6 of 9

Figure 6: Applications that is having throughput and the RPL log that shows the DODAG information

without DIO suppression attack.

DODAG Formation Graph:

Figure 7: The DODAG shows the formation of all sensors without any attack.

We can observe from the graph that when the DIO Attack is disabled, The DODAG formation

will happen with all the nodes being a part of it

With the DIO Suppression Attack disabled the performance of the network will increase in

comparison with Case 1 i.e., DIO Attack Enabled.

 Ver 14.1

© TETCOS LLP. All rights reserved Page 7 of 9

Case 3: With DIO Suppression Attack (DIO-Redundancy Constant = 7)

Figure 8: Sensor 4 and Sensor 5 suppressing their own DIO messages result in zero throughput for

Application 2 with DIO-Redundancy Constant = 7, due to a malicious node continuously sending DIO

messages to Sensors 4 and 5. The RPL log shows information about the DODAG with the DIO

suppression attack.

DODAG Formation Graph:

Figure 9: The DODAG shows that Sensor 4 and sensor 5 are suppressed, so it has not joined the

DODAG.

 Ver 14.1

© TETCOS LLP. All rights reserved Page 8 of 9

Note : To set DIO-Redundancy Constant to 7 you can refer Figure 2.

We can observe from the graph that Wireless_Sensor_5 and Wireless_Sensor_Node_4 is not

part of DODAG formation as they are not discovered and remain hidden in the network. And

from the Simulation result dashboard that when we enable DIO Suppression attack in that

situation some nodes are hidden due to which our throughput is getting decreased.

DIO Suppression severely degrade the performance of Low Power and Lossy Network (LLNs)

because of the repeatedly transmitting the DIO message by the malicious node to

neighbouring nodes.

The DIO suppression attack, an attack that induces victim nodes to suppress the transmission

of DIO messages. This causes a general degradation of the routes quality that can lead,

eventually, to network partitions.

With the DIO Redundancy Constant set to 7 the Suppression is more than that of the DIO

Redundancy constant 6.

Appendix: NetSim source code modifications and steps:

1. Add the following MATLAB install directory path in the Environment PATH variable

<MATLAB_INSTALL_DIRECTORY>\bin\win64

For eg: C:\Program Files\MATLAB\R2021b\bin\win64

Figure 10: Setting the environment variable path to run the matlab.

Note: If the machine has more than one MATLAB installed, the directory for the target platform must be

ahead of any other MATLAB directory (for instance, when compiling a 64-bit application, the directory

in the MATLAB 64-bit installation must be the first one on the PATH).

2. Open Command prompt as admin and execute the command “matlab -regserver”. This

will register MATLAB as a COM automation server and is required for NetSim to start

MATLAB automation server during runtime.

 Ver 14.1

© TETCOS LLP. All rights reserved Page 9 of 9

3. Go to home page, Click on Your work>Source Code and click on the Open code button.

4. Set malicious node id in RPL.h file.

#define MALICIOUS NODE 9

C Code that is highlighted in red colour is added to RPL_Message.c file

void rpl_process_ctrl_msg()

{

 switch (pstruEventDetails->pPacket->nControlDataType % 100)

 {

 case DODAG_Information_Object:

#if DIO_Attack_Enable

 if (fn_NetSim_RPL_MaliciousNode(pstruEventDetails)) {

 rpl_process_dio_msg();

 Fn_NetSim_RPL_MaliciousNodeReplay(pstruEventDetails);

 }

 else

 rpl_process_dio_msg();

#else

 rpl_process_dio_msg();

#endif

 break;

 case Destination_Advertisement_Object:

 rpl_process_dao_msg();

 break;

 case DODAG_Information_Solicitation:

 rpl_process_dis_msg();

 break;

 default:

 fnNetSimError("Unknown rpl ctrl msg %d in %s",

 pstruEventDetails->pPacket->nControlDataType,

 __FUNCTION__);

 break;

 }

5. Now right click on Solution explorer and select Rebuild.

a. Upon rebuilding, libRPL.dll will automatically get replaced in the respective bin

folders of the current workspace.

6. Then run the Example scenario which came along with the Workspace.

	DIO Suppression Attack in RPL
	1 Introduction
	2 Implementation in RPL (for 1 sink)
	3 With-DIO Suppression Attack
	4 Without-DIO Suppression Attack
	5 Results and discussion

